suppressPackageStartupMessages({ library(HIPCMatrix) library(ImmuneSpaceR) library(knitr) library(ggplot2) library(plotly) library(data.table) library(heatmaply) library(DT) }) opts_chunk$set(cache = FALSE, echo = FALSE, message = FALSE, warning = FALSE, fig.width = 12, fig.height = 10, fig.align = "center")
con <- HMX$new(params$study) irp <- con$run_irp( cohorts_train = params$cohorts_train, cohorts_test = params$cohorts_test, timepoint = params$timepoint, assay = params$assay, timepoint_unit = params$timepoint_unit, use_only_de_genes = params$use_only_de_genes, fc_thresh = params$fc_thresh, dichotomize = params$dichotomize, dichotomize_thresh = params$dichotomize_thresh )
data <- con$test_immune_response_predictors( cohorts = c(params$cohorts_train, params$cohorts_test) ) if ( length(params$cohorts_test) == 0 ) { p <- ggplot(data, aes(x = observed, y = predicted)) + geom_point() + geom_smooth(method = "lm") + theme_IS() } else { p <- ggplot(data, aes(x = observed, y = predicted)) + geom_point() + geom_smooth(method = "lm") + facet_wrap(~set + cohort) + xlab("Observed HAI response") + ylab("Predicted HAI response") + theme_IS() } #plot(p) ggplotly(p)
mat <- t(irp$FC) anno <- con$test_immune_response_predictors( cohorts = c(params$cohorts_test, params$cohorts_train) ) setorder(anno, -set, cohort, observed) anno <- data.frame(anno[, -"participant_id"], row.names = anno$participant_id) if ( params$dichotomize ) { anno$response <- as.factor(anno$response) anno_col <- list(response = c(`FALSE` = "white", `TRUE` = "black")) } else { anno_col <- list(response = grey(seq(1, 0, by = -.1))) } mat <- mat[, rownames(anno)] mat2 <- mat rownames(mat) <- ifelse(nchar(rownames(mat)) > 15, paste0(substr(rownames(mat), 1, 15), "..."), rownames(mat)) # pheatmap::pheatmap(mat, # annotation = anno, # annotation_colors = anno_col, # scale = "row", # color = ISpalette(20), # cluster_rows = TRUE, # cluster_distance = "correlation", # cluster_method = "ward", # dendrogram = "none", # cluster_cols = FALSE, # show_colnames = FALSE) heatmaply(x = mat2, dendrogram = "row", scale = "row", distfun = function(x) as.dist(1 - cor(t(x))), hclust_method = "ward.D", colors = ISpalette(20), col_side_colors = anno)
predictors <- irp$predictors[, .( `Gene Symbol` = paste0('<a href="http://immunet.princeton.edu/predictions/gene/?network=immune_global&gene=', gene_symbol, '" target="_blank">', gene_symbol, '</a>'), statistic, `p-value` )] datatable(predictors, escape = 1, width = 600)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.