predicting: Main prediction function applying the optimal ElasticNet and...

Description Usage Arguments Value Author(s) Examples

View source: R/MainLassoLDATraining.R

Description

Predict a new mixed population after training the model for a subpopulation in the first mixed population. All subpopulations in the new target mixed population will be predicted, where each targeted subpopulation will have a transition score from the orginal subpopulation to the new subpopulation.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
predicting(
  listData = NULL,
  cluster_mixedpop2 = NULL,
  mixedpop2 = NULL,
  out_idx = NULL,
  standardize = TRUE,
  LDA_run = FALSE,
  c_selectID = NULL,
  log_transform = FALSE
)

Arguments

listData

a list object containing trained results for the selected subpopulation in the first mixed population

cluster_mixedpop2

a vector of cluster assignment for mixedpop2

mixedpop2

a SingleCellExperiment object from the target mixed population of importance, e.g. differentially expressed genes that are most significant

out_idx

a number to specify index to write results into the list output. This is needed for running bootstrap.

standardize

a logical of whether to standardize the data

LDA_run

logical, if the LDA prediction is added to compare to ElasticNet, the LDA model needs to be trained from the training before inputting to this prediction step

c_selectID

a number to specify the trained cluster used for prediction

log_transform

boolean whether log transform should be computed

Value

a list with prediction results written in to the index out_idx

Author(s)

Quan Nguyen, 2017-11-25

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
c_selectID<-1
out_idx<-1
day2 <- day_2_cardio_cell_sample
mixedpop1 <-new_scGPS_object(ExpressionMatrix = day2$dat2_counts, 
    GeneMetadata = day2$dat2geneInfo, CellMetadata = day2$dat2_clusters)
day5 <- day_5_cardio_cell_sample
mixedpop2 <-new_scGPS_object(ExpressionMatrix = day5$dat5_counts, 
    GeneMetadata = day5$dat5geneInfo, CellMetadata = day5$dat5_clusters)
genes <-training_gene_sample
genes <-genes$Merged_unique
listData  <- training(genes, 
    cluster_mixedpop1 = colData(mixedpop1)[, 1], mixedpop1 = mixedpop1, 
    mixedpop2 = mixedpop2, c_selectID, listData =list(), out_idx=out_idx)
listData  <- predicting(listData =listData,  mixedpop2 = mixedpop2, 
    out_idx=out_idx, cluster_mixedpop2 = colData(mixedpop2)[, 1], 
    c_selectID = c_selectID)

IMB-Computational-Genomics-Lab/scGPS documentation built on Dec. 6, 2020, 3:20 p.m.