Description Usage Arguments Value Author(s) Examples
Find DE genes from comparing one clust vs remaining
1 2 3 4 5 6 7 8 | find_markers(
expression_matrix = NULL,
cluster = NULL,
selected_cluster = NULL,
fitType = "local",
dispersion_method = "per-condition",
sharing_Mode = "maximum"
)
|
expression_matrix |
is a normalised expression matrix. |
cluster |
corresponding cluster information in the expression_matrix by running CORE clustering or using other methods. |
selected_cluster |
a vector of unique cluster ids to calculate |
fitType |
string specifying 'local' or 'parametric' for DEseq dispersion estimation |
dispersion_method |
one of the options c( 'pooled', 'pooled-CR', per-condition', 'blind' ) |
sharing_Mode |
one of the options c("maximum", "fit-only", "gene-est-only") |
a list
containing sorted DESeq analysis results
Quan Nguyen, 2017-11-25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | day2 <- day_2_cardio_cell_sample
mixedpop1 <-new_scGPS_object(ExpressionMatrix = day2$dat2_counts,
GeneMetadata = day2$dat2geneInfo, CellMetadata = day2$dat2_clusters)
# depending on the data, the DESeq::estimateDispersions function requires
# suitable fitType
# and dispersion_method options
DEgenes <- find_markers(expression_matrix=assay(mixedpop1),
cluster = colData(mixedpop1)[,1],
selected_cluster=c(1), #can also run for more
#than one clusters, e.g.selected_cluster = c(1,2)
fitType = "parametric",
dispersion_method = "blind",
sharing_Mode="fit-only"
)
names(DEgenes)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.