Description Usage Arguments Value Examples
plot PCA, tSNE, and CIDR reduced datasets
1 2 3 4 5 6 7 8 | plot_reduced(
reduced_dat,
color_fac = NULL,
dims = c(1, 2),
dimNames = c("Dim1", "Dim2"),
palletes = NULL,
legend_title = "Cluster"
)
|
reduced_dat |
is a matrix with genes in rows and cells in columns |
color_fac |
is a vector of colors corresponding to clusters to determine colors of scattered plots |
dims |
an integer of the number of dimestions |
dimNames |
a vector of the names of the dimensions |
palletes |
can be a customised color pallete that determine colors for density plots, if NULL it will use RColorBrewer colorRampPalette(RColorBrewer::brewer.pal(sample_num, 'Set1'))(sample_num) |
legend_title |
title of the plot's legend |
a matrix with the top 20 CIDR dimensions
1 2 3 4 5 6 7 8 9 10 11 | day2 <- day_2_cardio_cell_sample
mixedpop1 <-new_scGPS_object(ExpressionMatrix = day2$dat2_counts,
GeneMetadata = day2$dat2geneInfo, CellMetadata = day2$dat2_clusters)
#CIDR_dim <-CIDR(expression.matrix=assay(mixedpop1))
#p <- plot_reduced(CIDR_dim, color_fac = factor(colData(mixedpop1)[,1]),
# palletes = seq_len(length(unique(colData(mixedpop1)[,1]))))
#plot(p)
tSNE_dim <-tSNE(expression.mat=assay(mixedpop1))
p2 <- plot_reduced(tSNE_dim, color_fac = factor(colData(mixedpop1)[,1]),
palletes = seq_len(length(unique(colData(mixedpop1)[,1]))))
plot(p2)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.