Description Usage Arguments Value Author(s) Examples
View source: R/CORE_clustering.R
after an optimal cluster has been identified, users may use this function to plot the resulting dendrogram with the branch colors represent clutering results
1 2 3 4 5 6 | plot_optimal_CORE(
original_tree,
optimal_cluster = NULL,
shift = -100,
values = NULL
)
|
original_tree |
a dendrogram object |
optimal_cluster |
a vector of cluster IDs for cells in the dendrogram |
shift |
a numer specifying the gap between the dendrogram and the colored |
values |
a vector containing color values of the branches and the colored bar underneath the tree bar underneath the dendrogram. This parameter allows better selection of colors for the display. |
a plot with colored braches and bars for the optimal clustering result
Quan Nguyen, 2017-11-25
1 2 3 4 5 6 7 8 9 10 | day5 <- day_5_cardio_cell_sample
mixedpop2 <-new_summarized_scGPS_object(ExpressionMatrix = day5$dat5_counts,
GeneMetadata = day5$dat5geneInfo, CellMetadata = day5$dat5_clusters)
CORE_cluster <- CORE_clustering(mixedpop2, remove_outlier = c(0))
key_height <- CORE_cluster$optimalClust$KeyStats$Height
optimal_res <- CORE_cluster$optimalClust$OptimalRes
optimal_index = which(key_height == optimal_res)
plot_optimal_CORE(original_tree= CORE_cluster$tree,
optimal_cluster = unlist(CORE_cluster$Cluster[optimal_index]),
shift = -2000)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.