R/utils.R

Defines functions calc_distance assess_rank_bias make_comb_ref build_atlas check_raw_counts append_genes plot_rank_bias query_rank_bias find_rank_bias get_unique_column file_marker_parse pos_neg_marker reverse_marker_matrix pos_neg_select marker_select ref_marker_select downsample_matrix plot_pathway_gsea gmt_to_list feature_select_PCA ref_feature_select overcluster_test insert_meta_object parse_loc_object object_loc_lookup clustify_nudge.Seurat clustify_nudge.default clustify_nudge gene_pct_markerm gene_pct cor_to_call_topn assign_ident calculate_pathway_gsea get_common_elements get_best_str get_best_match_matrix percent_clusters average_clusters overcluster is_pkg_available

Documented in append_genes assess_rank_bias assign_ident average_clusters build_atlas calc_distance calculate_pathway_gsea check_raw_counts clustify_nudge clustify_nudge.default clustify_nudge.Seurat cor_to_call_topn downsample_matrix feature_select_PCA file_marker_parse find_rank_bias gene_pct gene_pct_markerm get_best_match_matrix get_best_str get_common_elements get_unique_column gmt_to_list insert_meta_object make_comb_ref marker_select object_loc_lookup overcluster overcluster_test parse_loc_object percent_clusters plot_pathway_gsea plot_rank_bias pos_neg_marker pos_neg_select query_rank_bias ref_feature_select ref_marker_select reverse_marker_matrix

#' Check package is installed
#' @param pkg package to query
#' @return logical(1) indicating if package is available.
#' @noRd
is_pkg_available <- function(pkg,
                             action = c("none", "message", "warn", "error"),
                             msg = "") {
    has_pkg <- requireNamespace(pkg, quietly = TRUE)
    action <- match.arg(action)

    if (!has_pkg) {
        switch(action,
            message = message(
                pkg,
                " not installed ",
                msg
            ),
            warn = warning(pkg,
                " not installed ",
                msg,
                call. = FALSE
            ),
            error = stop(pkg,
                " not installed and is required for this function ",
                msg,
                call. = FALSE
            ),
        )
    }
    has_pkg
}


#' Overcluster by kmeans per cluster
#'
#' @param mat expression matrix
#' @param cluster_id list of ids per cluster
#' @param power decides the number of clusters for kmeans
#' @return new cluster_id list of more clusters
#' @examples
#' res <- overcluster(
#'     mat = pbmc_matrix_small,
#'     cluster_id = split(colnames(pbmc_matrix_small), pbmc_meta$classified)
#' )
#' length(res)
#' @export
overcluster <- function(
    mat,
    cluster_id,
    power = 0.15) {
    mat <- as.matrix(mat)
    new_ids <- list()
    for (name in names(cluster_id)) {
        ids <- cluster_id[[name]]
        if (length(ids) > 1) {
            new_clusters <-
                stats::kmeans(t(mat[, ids]),
                    centers = as.integer(length(ids)^power)
                )
            new_ids1 <-
                split(
                    names(new_clusters$cluster),
                    new_clusters$cluster
                )
            names(new_ids1) <-
                stringr::str_c(name, names(new_ids1), sep = "_")
            new_ids <- append(new_ids, new_ids1)
        } else {
            new_ids <- append(new_ids, cluster_id[name])
        }
    }
    new_ids
}

#' Average expression values per cluster
#'
#' @param mat expression matrix
#' @param metadata data.frame or vector containing cluster assignments per cell.
#' Order must match column order in supplied matrix. If a data.frame
#' provide the cluster_col parameters.
#' @param if_log input data is natural log,
#' averaging will be done on unlogged data
#' @param cluster_col column in metadata with cluster number
#' @param cell_col if provided, will reorder matrix first
#' @param low_threshold option to remove clusters with too few cells
#' @param method whether to take mean (default), median, 10% truncated mean, or trimean, max, min
#' @param output_log whether to report log results
#' @param subclusterpower whether to get multiple averages per original cluster
#' @param cut_n set on a limit of genes as expressed, lower ranked genes
#' are set to 0, considered unexpressed
#' @return average expression matrix, with genes for row names, and clusters
#'  for column names
#' @examples
#' mat <- average_clusters(
#'     mat = pbmc_matrix_small,
#'     metadata = pbmc_meta,
#'     cluster_col = "classified",
#'     if_log = FALSE
#' )
#' mat[1:3, 1:3]
#' @importFrom matrixStats rowMaxs rowMedians colRanks
#' @export
average_clusters <- function(
    mat,
    metadata,
    cluster_col = "cluster",
    if_log = TRUE,
    cell_col = NULL,
    low_threshold = 0,
    method = "mean",
    output_log = TRUE,
    subclusterpower = 0,
    cut_n = NULL) {
    cluster_info <- metadata
    if (!(is.null(cell_col))) {
        if (!(all(colnames(mat) == cluster_info[[cell_col]]))) {
            mat <- mat[, cluster_info[[cell_col]]]
        }
    }

    if (is.null(colnames(mat))) {
        stop(
            "The input matrix does not have colnames.\n",
            "Check colnames() of input object"
        )
    }
    if (is.vector(cluster_info)) {
        if (ncol(mat) != length(cluster_info)) {
            stop("vector of cluster assignments does not match the number of columns in the matrix",
                call. = FALSE
            )
        }
        cluster_ids <- split(colnames(mat), cluster_info)
    } else if (is.data.frame(cluster_info) & !is.null(cluster_col)) {
        if (!is.null(cluster_col) &&
            !(cluster_col %in% colnames(metadata))) {
            stop("given `cluster_col` is not a column in `metadata`", call. = FALSE)
        }

        cluster_info_temp <- cluster_info[[cluster_col]]
        if (is.factor(cluster_info_temp)) {
            cluster_info_temp <- droplevels(cluster_info_temp)
        }
        cluster_ids <- split(colnames(mat), cluster_info_temp)
    } else if (is.factor(cluster_info)) {
        cluster_info <- as.character(cluster_info)
        if (ncol(mat) != length(cluster_info)) {
            stop("vector of cluster assignments does not match the number of columns in the matrix",
                call. = FALSE
            )
        }
        cluster_ids <- split(colnames(mat), cluster_info)
    } else {
        stop("metadata not formatted correctly,
         supply either a vector or a dataframe",
            call. = FALSE
        )
    }

    if (subclusterpower > 0) {
        cluster_ids <-
            overcluster(mat, cluster_ids, power = subclusterpower)
    }

    if (method == "mean") {
        out <- lapply(
            cluster_ids,
            function(cell_ids) {
                if (!all(cell_ids %in% colnames(mat))) {
                    stop("cell ids not found in input matrix",
                        call. = FALSE
                    )
                }
                if (if_log) {
                    mat_data <- expm1(mat[, cell_ids, drop = FALSE])
                } else {
                    mat_data <- mat[, cell_ids, drop = FALSE]
                }
                res <- Matrix::rowMeans(mat_data, na.rm = TRUE)
                if (output_log) {
                    res <- log1p(res)
                }
                res
            }
        )
    } else if (method == "median") {
        out <- lapply(
            cluster_ids,
            function(cell_ids) {
                if (!all(cell_ids %in% colnames(mat))) {
                    stop("cell ids not found in input matrix",
                        call. = FALSE
                    )
                }
                mat_data <- mat[, cell_ids, drop = FALSE]
                # mat_data[mat_data == 0] <- NA
                res <- matrixStats::rowMedians(as.matrix(mat_data),
                    na.rm = TRUE
                )
                res[is.na(res)] <- 0
                names(res) <- rownames(mat_data)
                res
            }
        )
    } else if (method == "trimean") {
        out <- lapply(
            cluster_ids,
            function(cell_ids) {
                if (!all(cell_ids %in% colnames(mat))) {
                    stop("cell ids not found in input matrix",
                        call. = FALSE
                    )
                }
                mat_data <- mat[, cell_ids, drop = FALSE]
                # mat_data[mat_data == 0] <- NA
                res1 <- matrixStats::rowQuantiles(as.matrix(mat_data),
                    probs = 0.25,
                    na.rm = TRUE
                )
                res2 <- matrixStats::rowQuantiles(as.matrix(mat_data),
                    probs = 0.5,
                    na.rm = TRUE
                )
                res3 <- matrixStats::rowQuantiles(as.matrix(mat_data),
                    probs = 0.75,
                    na.rm = TRUE
                )
                res <- 0.5 * res2 + 0.25 * res1 + 0.25 * res3
                res[is.na(res)] <- 0
                names(res) <- rownames(mat_data)
                res
            }
        )
    } else if (method == "truncate") {
        out <- lapply(
            cluster_ids,
            function(cell_ids) {
                if (!all(cell_ids %in% colnames(mat))) {
                    stop("cell ids not found in input matrix",
                        call. = FALSE
                    )
                }
                mat_data <- mat[, cell_ids, drop = FALSE]
                # mat_data[mat_data == 0] <- NA
                res <- apply(mat_data, 1, function(x) mean(x, trim = 0.1, na.rm = TRUE))
                colnames(res) <- names(cell_ids)
                res
            }
        )
    } else if (method == "min") {
        out <- lapply(
            cluster_ids,
            function(cell_ids) {
                if (!all(cell_ids %in% colnames(mat))) {
                    stop("cell ids not found in input matrix",
                        call. = FALSE
                    )
                }
                mat_data <- mat[, cell_ids, drop = FALSE]
                # mat_data[mat_data == 0] <- NA
                res <- matrixStats::rowMins(as.matrix(mat_data),
                    na.rm = TRUE
                )
                res[is.na(res)] <- 0
                names(res) <- rownames(mat_data)
                res
            }
        )
    } else if (method == "max") {
        out <- lapply(
            cluster_ids,
            function(cell_ids) {
                if (!all(cell_ids %in% colnames(mat))) {
                    stop("cell ids not found in input matrix",
                        call. = FALSE
                    )
                }
                mat_data <- mat[, cell_ids, drop = FALSE]
                # mat_data[mat_data == 0] <- NA
                res <- matrixStats::rowMaxs(as.matrix(mat_data),
                    na.rm = TRUE
                )
                res[is.na(res)] <- 0
                names(res) <- rownames(mat_data)
                res
            }
        )
    }

    out <- do.call(cbind, out)
    if (low_threshold > 0) {
        fil <- vapply(cluster_ids,
            FUN = length,
            FUN.VALUE = numeric(1)
        ) >= low_threshold
        if (!all(as.vector(fil))) {
            message(
                "The following clusters have less than ", low_threshold, " cells for this analysis: ",
                paste(colnames(out)[!as.vector(fil)], collapse = ", "),
                ". They are excluded."
            )
        }
        out <- out[, as.vector(fil)]
    } else {
        fil <- vapply(cluster_ids,
            FUN = length,
            FUN.VALUE = numeric(1)
        ) >= 10
        if (!all(as.vector(fil))) {
            message(
                "The following clusters have less than ", 10, " cells for this analysis: ",
                paste(colnames(out)[!as.vector(fil)], collapse = ", "),
                ". Classification is likely inaccurate."
            )
        }
    }
    if (!(is.null(cut_n))) {
        expr_mat <- out
        expr_df <- as.matrix(expr_mat)
        df_temp <- t(matrixStats::colRanks(-expr_df,
            ties.method = "average"
        ))
        rownames(df_temp) <- rownames(expr_mat)
        colnames(df_temp) <- colnames(expr_mat)
        expr_mat[df_temp > cut_n] <- 0
        out <- expr_mat
    }

    return(out)
}

#' Percentage detected per cluster
#'
#' @param mat expression matrix
#' @param metadata data.frame with cells
#' @param cluster_col column in metadata with cluster number
#' @param cut_num binary cutoff for detection
#' @return matrix of numeric values, with genes for row names,
#' and clusters for column names
percent_clusters <- function(
    mat,
    metadata,
    cluster_col = "cluster",
    cut_num = 0.5) {
    cluster_info <- metadata
    mat[mat >= cut_num] <- 1
    mat[mat <= cut_num] <- 0

    average_clusters(mat, cluster_info,
        if_log = FALSE,
        cluster_col = cluster_col
    )
}

#' Function to make best call from correlation matrix
#'
#' @param cor_mat correlation matrix
#' @return matrix of 1s and 0s
get_best_match_matrix <- function(cor_mat) {
    cor_mat <- as.matrix(cor_mat)
    best_mat <-
        as.data.frame(cor_mat - matrixStats::rowMaxs(as.matrix(cor_mat)))
    best_mat[best_mat == 0] <- "1"
    best_mat[best_mat != "1"] <- "0"

    return(best_mat)
}

#' Function to make call and attach score
#'
#' @param name name of row to query
#' @param best_mat binarized call matrix
#' @param cor_mat correlation matrix
#' @param carry_cor whether the correlation score gets reported
#' @return string with ident call and possibly cor value
get_best_str <- function(
    name,
    best_mat,
    cor_mat,
    carry_cor = TRUE) {
    if (sum(as.numeric(best_mat[name, ])) > 0) {
        best.names <- colnames(best_mat)[which(best_mat[name, ] == 1)]
        best.cor <-
            round(cor_mat[name, which(best_mat[name, ] == 1)], 2)
        for (i in seq_len(length(best.cor))) {
            if (i == 1) {
                str <- paste0(
                    best.names[i],
                    " (",
                    best.cor[i],
                    ")"
                )
            } else {
                str <- paste0(
                    str,
                    "; ",
                    best.names[i],
                    " (",
                    best.cor[i],
                    ")"
                )
            }
        }
    } else {
        str <- "?"
    }

    if (carry_cor == FALSE) {
        str <- gsub(" \\(.*\\)", "", str)
    }
    return(str)
}

#' Find entries shared in all vectors
#' @description return entries found in all supplied vectors.
#'  If the vector supplied is NULL or NA, then it will be excluded
#'  from the comparison.
#' @param ... vectors
#' @return vector of shared elements
get_common_elements <- function(...) {
    vecs <- list(...)
    # drop NULL elements of list
    vecs <- vecs[!vapply(vecs, is.null, FUN.VALUE = logical(1))]
    # drop NA elements of list (NA values OK in a vector)
    vecs <- vecs[!is.na(vecs)]

    Reduce(intersect, vecs)
}

#' Convert expression matrix to GSEA pathway scores
#' (would take a similar place in workflow before average_clusters/binarize)
#'
#' @param mat expression matrix
#' @param pathway_list a list of vectors, each named for a specific pathway,
#' or dataframe
#' @param n_perm Number of permutation for fgsea function. Defaults to 1000.
#' @param scale convert expr_mat into zscores prior to running GSEA?,
#' default = FALSE
#' @param no_warnings suppress warnings from gsea ties
#' @return matrix of GSEA NES values, cell types as row names,
#' pathways as column names
#' @examples
#' gl <- list(
#'     "n" = c("PPBP", "LYZ", "S100A9"),
#'     "a" = c("IGLL5", "GNLY", "FTL")
#' )
#'
#' pbmc_avg <- average_clusters(
#'     mat = pbmc_matrix_small,
#'     metadata = pbmc_meta,
#'     cluster_col = "classified"
#' )
#'
#' calculate_pathway_gsea(
#'     mat = pbmc_avg,
#'     pathway_list = gl
#' )
#' @export
calculate_pathway_gsea <- function(
    mat,
    pathway_list,
    n_perm = 1000,
    scale = TRUE,
    no_warnings = TRUE) {
    # pathway_list can be user defined or
    # `my_pathways <- fgsea::reactomePathways(rownames(pbmc4k_matrix))`
    out <- lapply(
        names(pathway_list),
        function(y) {
            marker_list <- list()
            marker_list[[1]] <- pathway_list[[y]]
            names(marker_list) <- y
            v1 <- marker_list
            temp <- run_gsea(
                mat,
                v1,
                n_perm = n_perm,
                scale = scale,
                per_cell = TRUE,
                no_warnings = no_warnings
            )
            temp <- temp[, 3, drop = FALSE]
        }
    )
    res <- do.call(cbind, out)
    colnames(res) <- names(pathway_list)
    res
}

#' manually change idents as needed
#'
#' @param metadata column of ident
#' @param cluster_col column in metadata containing cluster info
#' @param ident_col column in metadata containing identity assignment
#' @param clusters names of clusters to change, string or
#'  vector of strings
#' @param idents new idents to assign, must be length of 1 or
#' same as clusters
#' @return new dataframe of metadata
assign_ident <- function(
    metadata,
    cluster_col = "cluster",
    ident_col = "type",
    clusters,
    idents) {
    if (!is.vector(clusters) | !is.vector(idents)) {
        stop("unsupported clusters or idents", call. = FALSE)
    } else {
        if (length(idents) == 1) {
            idents <- rep(idents, length(clusters))
        } else if (length(idents) != length(clusters)) {
            stop("unsupported lengths pairs of clusters and idents",
                call. = FALSE
            )
        }
    }

    for (n in seq_len(length(clusters))) {
        mindex <- metadata[[cluster_col]] == clusters[n]
        metadata[mindex, ident_col] <- idents[n]
    }
    metadata
}

#' get top calls for each cluster
#'
#' @param cor_mat input similarity matrix
#' @param metadata input metadata with tsne or umap coordinates
#' and cluster ids
#' @param col metadata column, can be cluster or cellid
#' @param collapse_to_cluster if a column name is provided,
#' takes the most frequent call of entire cluster to color in plot
#' @param threshold minimum correlation coefficent cutoff for calling clusters
#' @param topn number of calls for each cluster
#' @return dataframe of cluster, new potential ident, and r info
#' @examples
#' res <- clustify(
#'     input = pbmc_matrix_small,
#'     metadata = pbmc_meta,
#'     ref_mat = cbmc_ref,
#'     query_genes = pbmc_vargenes,
#'     cluster_col = "classified"
#' )
#'
#' cor_to_call_topn(
#'     cor_mat = res,
#'     metadata = pbmc_meta,
#'     col = "classified",
#'     collapse_to_cluster = FALSE,
#'     threshold = 0.5
#' )
#' @export
cor_to_call_topn <- function(
    cor_mat,
    metadata = NULL,
    col = "cluster",
    collapse_to_cluster = FALSE,
    threshold = 0,
    topn = 2) {
    correlation_matrix <- cor_mat
    df_temp <- tibble::as_tibble(correlation_matrix, rownames = col)
    df_temp <-
        tidyr::gather(
            df_temp,
            key = !!dplyr::sym("type"),
            value = !!dplyr::sym("r"),
            -!!col
        )
    df_temp[["type"]][df_temp$r < threshold] <-
        paste0("r<", threshold, ", unassigned")
    df_temp <-
        dplyr::top_n(
            dplyr::group_by_at(df_temp, 1),
            topn,
            !!dplyr::sym("r")
        )
    df_temp_full <- df_temp

    if (collapse_to_cluster != FALSE) {
        if (!(col %in% colnames(metadata))) {
            metadata <- tibble::as_tibble(metadata, rownames = col)
        }
        df_temp_full <-
            dplyr::left_join(df_temp_full, metadata, by = col)
        df_temp_full[, "type2"] <- df_temp_full[[collapse_to_cluster]]
        df_temp_full2 <-
            dplyr::group_by(
                df_temp_full,
                !!dplyr::sym("type"),
                !!dplyr::sym("type2")
            )
        df_temp_full2 <-
            dplyr::summarize(df_temp_full2,
                sum = sum(!!dplyr::sym("r")),
                n = n()
            )
        df_temp_full2 <-
            dplyr::group_by(df_temp_full2, !!dplyr::sym("type2"))
        df_temp_full2 <-
            dplyr::arrange(df_temp_full2, desc(n), desc(sum))
        df_temp_full2 <-
            dplyr::filter(
                df_temp_full2,
                !!dplyr::sym("type") != paste0(
                    "r<",
                    threshold,
                    ", unassigned"
                )
            )
        df_temp_full2 <- dplyr::slice(df_temp_full2, seq_len(topn))
        df_temp_full2 <-
            dplyr::right_join(
                df_temp_full2,
                dplyr::select(df_temp_full, -c(
                    !!dplyr::sym("type"), !!dplyr::sym("r")
                )),
                by = stats::setNames(collapse_to_cluster, "type2"),
                relationship = "many-to-many"
            )
        df_temp_full <-
            dplyr::mutate(df_temp_full2, type = tidyr::replace_na(
                !!dplyr::sym("type"),
                paste0("r<", threshold, ", unassigned")
            ))
        df_temp_full <- dplyr::group_by(
            df_temp_full,
            !!dplyr::sym(col)
        )
        df_temp_full <-
            dplyr::distinct(df_temp_full,
                !!dplyr::sym("type"),
                !!dplyr::sym("type2"),
                .keep_all = TRUE
            )
        dplyr::arrange(df_temp_full, desc(n), desc(sum),
            .by_group = TRUE
        )
    } else {
        df_temp_full <- dplyr::group_by(
            df_temp_full,
            !!dplyr::sym(col)
        )
        dplyr::arrange(df_temp_full, desc(!!dplyr::sym("r")),
            .by_group = TRUE
        )
    }
}

#' pct of cells in each cluster that express genelist
#'
#' @param matrix expression matrix
#' @param genelist vector of marker genes for one identity
#' @param clusters vector of cluster identities
#' @param returning whether to return mean, min,
#' or max of the gene pct in the gene list
#' @return vector of numeric values
gene_pct <- function(
    matrix,
    genelist,
    clusters,
    returning = "mean") {
    genelist <- intersect(genelist, rownames(matrix))
    if (is.factor(clusters)) {
        clusters <-
            factor(clusters, levels = c(levels(clusters), "orig.NA"))
    }
    clusters[is.na(clusters)] <- "orig.NA"
    unique_clusters <- unique(clusters)

    if (returning == "mean") {
        vapply(unique_clusters, function(x) {
            celllist <- clusters == x
            tmp <- matrix[genelist, celllist, drop = FALSE]
            tmp[tmp > 0] <- 1
            mean(Matrix::rowSums(tmp) / ncol(tmp))
        }, FUN.VALUE = numeric(1))
    } else if (returning == "min") {
        vapply(unique_clusters, function(x) {
            celllist <- clusters == x
            tmp <- matrix[genelist, celllist, drop = FALSE]
            tmp[tmp > 0] <- 1
            min(Matrix::rowSums(tmp) / ncol(tmp))
        }, FUN.VALUE = numeric(1))
    } else if (returning == "max") {
        vapply(unique_clusters, function(x) {
            celllist <- clusters == x
            tmp <- matrix[genelist, celllist, drop = FALSE]
            tmp[tmp > 0] <- 1
            max(Matrix::rowSums(tmp) / ncol(tmp))
        }, FUN.VALUE = numeric(1))
    }
}

#' pct of cells in every cluster that express a series of genelists
#'
#' @param matrix expression matrix
#' @param marker_m matrixized markers
#' @param metadata data.frame or vector containing cluster
#' assignments per cell.
#' Order must match column order in supplied matrix. If a data.frame
#' provide the cluster_col parameters.
#' @param cluster_col column in metadata with cluster number
#' @param norm whether and how the results are normalized
#' @return matrix of numeric values, clusters from mat as row names,
#'  cell types from marker_m as column names
#' @examples
#' gene_pct_markerm(
#'     matrix = pbmc_matrix_small,
#'     marker_m = cbmc_m,
#'     metadata = pbmc_meta,
#'     cluster_col = "classified"
#' )
#' @export
gene_pct_markerm <- function(
    matrix,
    marker_m,
    metadata,
    cluster_col = NULL,
    norm = NULL) {
    cluster_info <- metadata
    if (is.vector(cluster_info)) {

    } else if (is.data.frame(cluster_info) & !is.null(cluster_col)) {
        cluster_info <- cluster_info[[cluster_col]]
    } else {
        stop("metadata not formatted correctly,
         supply either a  vector or a dataframe",
            call. = FALSE
        )
    }

    # coerce factors in character
    if (is.factor(cluster_info)) {
        cluster_info <- as.character(cluster_info)
    }

    if (!is.data.frame(marker_m)) {
        marker_m <- as.data.frame(marker_m)
    }

    out <- vapply(colnames(marker_m), function(x) {
        gene_pct(
            matrix,
            marker_m[[x]],
            cluster_info
        )
    }, FUN.VALUE = numeric(length(unique(cluster_info))))

    if (!(is.null(norm))) {
        if (norm == "divide") {
            out <- sweep(out, 2, apply(out, 2, max), "/")
        } else if (norm == "diff") {
            out <- sweep(out, 2, apply(out, 2, max), "-")
        } else {
            out <- sweep(out, 2, apply(out, 2, max) * norm)
            out[out < 0] <- 0
            out[out > 0] <- 1
        }
    }

    # edge cases where all markers can't be found for a cluster
    out[is.na(out)] <- 0
    out
}

#' Combined function to compare scRNA-seq data to
#'  bulk RNA-seq data and marker list
#'
#' @examples
#'
#' # Seurat
#' so <- so_pbmc()
#' clustify_nudge(
#'     input = so,
#'     ref_mat = cbmc_ref,
#'     marker = cbmc_m,
#'     cluster_col = "seurat_clusters",
#'     threshold = 0.8,
#'     obj_out = FALSE,
#'     mode = "pct",
#'     dr = "umap"
#' )
#'
#' # Matrix
#' clustify_nudge(
#'     input = pbmc_matrix_small,
#'     ref_mat = cbmc_ref,
#'     metadata = pbmc_meta,
#'     marker = as.matrix(cbmc_m),
#'     query_genes = pbmc_vargenes,
#'     cluster_col = "classified",
#'     threshold = 0.8,
#'     call = FALSE,
#'     marker_inmatrix = FALSE,
#'     mode = "pct"
#' )
#' @export
clustify_nudge <- function(input, ...) {
    UseMethod("clustify_nudge", input)
}

#' @rdname clustify_nudge
#' @param input express matrix or object
#' @param ref_mat reference expression matrix
#' @param metadata cell cluster assignments, supplied as a vector
#' or data.frame. If
#' data.frame is supplied then `cluster_col` needs to be set.
#' @param marker matrix of markers
#' @param query_genes A vector of genes of interest to compare.
#' If NULL, then common genes between
#' the expr_mat and ref_mat will be used for comparision.
#' @param cluster_col column in metadata that contains cluster ids per cell.
#'  Will default to first
#' column of metadata if not supplied.
#' Not required if running correlation per cell.
#' @param compute_method method(s) for computing similarity scores
#' @param weight relative weight for the gene list scores,
#' when added to correlation score
#' @param dr stored dimension reduction
#' @param ... passed to matrixize_markers
#' @param norm whether and how the results are normalized
#' @param call make call or just return score matrix
#' @param marker_inmatrix whether markers genes are already
#'  in preprocessed matrix form
#' @param mode use marker expression pct or ranked cor score for nudging
#' @param obj_out whether to output object instead of cor matrix
#' @param seurat_out output cor matrix or called seurat object (deprecated, use obj_out)
#' @param rename_prefix prefix to add to type and r column names
#' @param lookuptable if not supplied, will look in built-in
#' table for object parsing
#' @param threshold identity calling minimum score threshold,
#'  only used when obj_out = T

#' @return single cell object, or matrix of numeric values,
#'  clusters from input as row names, cell types from ref_mat as column names
#' @export
clustify_nudge.default <- function(
    input,
    ref_mat,
    marker,
    metadata = NULL,
    cluster_col = NULL,
    query_genes = NULL,
    compute_method = "spearman",
    weight = 1,
    threshold = -Inf,
    dr = "umap",
    norm = "diff",
    call = TRUE,
    marker_inmatrix = TRUE,
    mode = "rank",
    obj_out = FALSE,
    seurat_out = obj_out,
    rename_prefix = NULL,
    lookuptable = NULL,
    ...) {
    if (marker_inmatrix != TRUE) {
        marker <- matrixize_markers(
            marker,
            ...
        )
    }

    if (!inherits(input, c("matrix", "Matrix", "data.frame"))) {
        input_original <- input
        temp <- parse_loc_object(
            input,
            type = class(input),
            expr_loc = NULL,
            meta_loc = NULL,
            var_loc = NULL,
            cluster_col = cluster_col,
            lookuptable = lookuptable
        )

        if (!(is.null(temp[["expr"]]))) {
            message("recognized object type - ", class(input))
        }

        input <- temp[["expr"]]
        metadata <- temp[["meta"]]
        if (is.null(query_genes)) {
            query_genes <- temp[["var"]]
        }
        if (is.null(cluster_col)) {
            cluster_col <- temp[["col"]]
        }
    }

    resa <- clustify(
        input = input,
        ref_mat = ref_mat,
        metadata = metadata,
        cluster_col = cluster_col,
        query_genes = query_genes,
        obj_out = FALSE,
        per_cell = FALSE
    )

    if (mode == "pct") {
        resb <- gene_pct_markerm(input,
            marker,
            metadata,
            cluster_col = cluster_col,
            norm = norm
        )
    } else if (mode == "rank") {
        if (ncol(marker) > 1 && is.character(marker[1, 1])) {
            marker <- pos_neg_marker(marker)
        }
        resb <- pos_neg_select(input,
            marker,
            metadata,
            cluster_col = cluster_col,
            cutoff_score = NULL
        )
        empty_vec <- setdiff(colnames(resa), colnames(resb))
        empty_mat <-
            matrix(
                0,
                nrow = nrow(resb),
                ncol = length(empty_vec),
                dimnames = list(rownames(resb), empty_vec)
            )
        resb <- cbind(resb, empty_mat)
    }

    res <- resa[order(rownames(resa)), order(colnames(resa))] +
        resb[order(rownames(resb)), order(colnames(resb))] * weight
    obj_out <- seurat_out
    if (obj_out &&
        !inherits(input_original, c("matrix", "Matrix", "data.frame"))) {
        df_temp <- cor_to_call(
            res,
            metadata = metadata,
            cluster_col = cluster_col,
            threshold = threshold
        )

        df_temp_full <- call_to_metadata(
            df_temp,
            metadata = metadata,
            cluster_col = cluster_col,
            per_cell = FALSE,
            rename_prefix = rename_prefix
        )

        out <- insert_meta_object(input_original,
            df_temp_full,
            lookuptable = lookuptable
        )

        return(out)
    } else {
        if (call == TRUE) {
            df_temp <- cor_to_call(res,
                threshold = threshold
            )
            colnames(df_temp) <- c(cluster_col, "type", "score")
            return(df_temp)
        } else {
            return(res)
        }
    }
}

#' @rdname clustify_nudge
#' @export
clustify_nudge.Seurat <- function(
    input,
    ref_mat,
    marker,
    cluster_col = NULL,
    query_genes = NULL,
    compute_method = "spearman",
    weight = 1,
    obj_out = TRUE,
    seurat_out = obj_out,
    threshold = -Inf,
    dr = "umap",
    norm = "diff",
    marker_inmatrix = TRUE,
    mode = "rank",
    rename_prefix = NULL,
    ...) {
    if (marker_inmatrix != TRUE) {
        marker <- matrixize_markers(
            marker,
            ...
        )
    }
    resa <- clustify(
        input = input,
        ref_mat = ref_mat,
        cluster_col = cluster_col,
        query_genes = query_genes,
        obj_out = FALSE,
        per_cell = FALSE,
        dr = dr
    )

    if (mode == "pct") {
        resb <- gene_pct_markerm(
            object_data(input, "data"),
            marker,
            object_data(input, "meta.data"),
            cluster_col = cluster_col,
            norm = norm
        )
    } else if (mode == "rank") {
        if (ncol(marker) > 1 && is.character(marker[1, 1])) {
            marker <- pos_neg_marker(marker)
        }
        resb <- pos_neg_select(
            object_data(input, "data"),
            marker,
            object_data(input, "meta.data"),
            cluster_col = cluster_col,
            cutoff_score = NULL
        )
        empty_vec <- setdiff(colnames(resa), colnames(resb))
        empty_mat <-
            matrix(
                0,
                nrow = nrow(resb),
                ncol = length(empty_vec),
                dimnames = list(rownames(resb), empty_vec)
            )
        resb <- cbind(resb, empty_mat)
    }

    res <- resa[order(rownames(resa)), order(colnames(resa))] +
        resb[order(rownames(resb)), order(colnames(resb))] * weight
    obj_out <- seurat_out
    if (!obj_out) {
        res
    } else {
        df_temp <- cor_to_call(
            res,
            metadata = object_data(input, "meta.data"),
            cluster_col = cluster_col,
            threshold = threshold
        )

        df_temp_full <- call_to_metadata(
            df_temp,
            metadata = object_data(input, "meta.data"),
            cluster_col = cluster_col,
            per_cell = FALSE,
            rename_prefix = rename_prefix
        )

        if ("SeuratObject" %in% loadedNamespaces()) {
            input <- write_meta(input, df_temp_full)
            return(input)
        } else {
            message("seurat not loaded, returning cor_mat instead")
            return(res)
        }
        input
    }
}
#' lookup table for single cell object structures
#' @importFrom SummarizedExperiment colData<-
#' @returns A list populated with standardized functions to
#' access relevant data structures in multiple single cell
#' data formats.
object_loc_lookup <- function() {
    l <- list()

    l$SingleCellExperiment <- c(
        expr = function(x) object_data(x, "data"),
        meta = function(x) object_data(x, "meta.data"),
        add_meta = function(x, md) {
            colData(x) <- md
            x
        },
        var = NULL,
        col = "cell_type1"
    )

    l$Seurat <- c(
        expr = function(x) object_data(x, "data"),
        meta = function(x) object_data(x, "meta.data"),
        add_meta = function(x, md) {
            x@meta.data <- md
            x
        },
        var = function(x) object_data(x, "var.genes"),
        col = "RNA_snn_res.1"
    )

    l$URD <- c(
        expr = function(x) x@logupx.data,
        meta = function(x) x@meta,
        add_meta = function(x, md) {
            x@meta <- md
            x
        },
        var = function(x) x@var.genes,
        col = "cluster"
    )

    l$FunctionalSingleCellExperiment <- c(
        expr = function(x) x@ExperimentList$rnaseq@assays$data$logcounts,
        meta = function(x) x@ExperimentList$rnaseq@colData,
        add_meta = function(x, md) {
            x@ExperimentList$rnaseq@colData <- md
            x
        },
        var = NULL,
        col = "leiden_cluster"
    )

    l$CellDataSet <- c(
        expr = function(x) {
            do.call(function(x) {
                row.names(x) <- x@featureData@data$gene_short_name
                return(x)
            }, list(x@assayData$exprs))
        },
        meta = function(x) as.data.frame(x@phenoData@data),
        add_meta = function(x, md) {
            x@phenoData@data <- md
            x
        },
        var = function(x) as.character(x@featureData@data$gene_short_name[x@featureData@data$use_for_ordering == TRUE]),
        col = "Main_Cluster"
    )
    l
}

#' more flexible parsing of single cell objects
#'
#' @param input input object
#' @param type look up predefined slots/loc
#' @param expr_loc function that extracts expression matrix
#' @param meta_loc function that extracts metadata
#' @param var_loc function that extracts variable genes
#' @param cluster_col column of clustering from metadata
#' @param lookuptable if not supplied, will use object_loc_lookup() for parsing.
#' @return list of expression, metadata, vargenes, cluster_col info from object
#' @examples
#' so <- so_pbmc()
#' obj <- parse_loc_object(so)
#' length(obj)
#' @export
parse_loc_object <- function(
    input,
    type = class(input),
    expr_loc = NULL,
    meta_loc = NULL,
    var_loc = NULL,
    cluster_col = NULL,
    lookuptable = NULL) {
    if (!type %in% c("SingleCellExperiment", "Seurat")) {
        warning(
            "Support for ", type, " objects is deprecated ",
            "and will be removed from clustifyr in the next version"
        )
    }

    if (is.null(lookuptable)) {
        lookup <- object_loc_lookup()
    } else {
        warning(
            "Support for supplying custom objects is deprecated ",
            "and will be removed from clustifyr in the next version"
        )
        lookup <- lookuptable
    }

    if (type %in% names(lookup)) {
        parsed <- list(
            expr = lookup[[type]]$expr(input),
            meta = as.data.frame(lookup[[type]]$meta(input)),
            var = lookup[[type]]$var(input),
            col = lookup[[type]]$col
        )
    } else {
        parsed <- list(NULL, NULL, NULL, NULL)
    }

    names(parsed) <- c("expr", "meta", "var", "col")

    if (!(is.null(expr_loc))) {
        parsed[["expr"]] <- expr_loc(input)
    }

    if (!(is.null(meta_loc))) {
        parsed[["meta"]] <- as.data.frame(meta_loc(input))
    }

    if (!(is.null(var_loc))) {
        parsed[["var"]] <- var_loc(input)
    }

    if (!(is.null(cluster_col))) {
        parsed[["col"]] <- cluster_col
    }

    parsed
}

#' more flexible metadata update of single cell objects
#'
#' @param input input object
#' @param new_meta new metadata table to insert back into object
#' @param type look up predefined slots/loc
#' @param meta_loc metadata location
#' @param lookuptable if not supplied,
#' will look in built-in table for object parsing
#' @return new object with new metadata inserted
#' @examples
#' so <- so_pbmc()
#' insert_meta_object(so, seurat_meta(so, dr = "umap"))
#' @export
insert_meta_object <- function(
    input,
    new_meta,
    type = class(input),
    meta_loc = NULL,
    lookuptable = NULL) {
    if (is.null(lookuptable)) {
        lookup <- object_loc_lookup()
    } else {
        lookup <- lookuptable
    }

    if (!type %in% names(lookup)) {
        stop("unrecognized object type", call. = FALSE)
    } else {
        input <- lookup[[type]]$add_meta(input, new_meta)
        return(input)
    }
}

#' compare clustering parameters and classification outcomes
#'
#' @param expr expression matrix
#' @param metadata metadata including cluster info and
#' dimension reduction plotting
#' @param ref_mat reference matrix
#' @param cluster_col column of clustering from metadata
#' @param x_col column of metadata for x axis plotting
#' @param y_col column of metadata for y axis plotting
#' @param n expand n-fold for over/under clustering
#' @param ngenes number of genes to use for feature selection,
#' use all genes if NULL
#' @param query_genes vector, otherwise genes with be recalculated
#' @param do_label whether to label each cluster at median center
#' @param do_legend whether to draw legend
#' @param newclustering use kmeans if NULL on dr
#' or col name for second column of clustering
#' @param threshold type calling threshold
#' @param combine if TRUE return a single plot with combined panels, if
#' FALSE return list of plots (default: TRUE)
#' @return faceted ggplot object
#' @examples
#' set.seed(42)
#' overcluster_test(
#'     expr = pbmc_matrix_small,
#'     metadata = pbmc_meta,
#'     ref_mat = cbmc_ref,
#'     cluster_col = "classified",
#'     x_col = "UMAP_1",
#'     y_col = "UMAP_2"
#' )
#' @export
overcluster_test <- function(
    expr,
    metadata,
    ref_mat,
    cluster_col,
    x_col = "UMAP_1",
    y_col = "UMAP_2",
    n = 5,
    ngenes = NULL,
    query_genes = NULL,
    threshold = 0,
    do_label = TRUE,
    do_legend = FALSE,
    newclustering = NULL,
    combine = TRUE) {
    if (is.null(newclustering)) {
        metadata$new_clusters <-
            as.character(stats::kmeans(metadata[, c(x_col, y_col)],
                centers = n * length(unique(metadata[[cluster_col]]))
            )$clust)
    } else {
        metadata$new_clusters <- metadata[[newclustering]]
        n <- length(unique(metadata[[newclustering]])) /
            length(unique(metadata[[cluster_col]]))
    }

    if (is.null(query_genes)) {
        if (is.null(ngenes)) {
            genes <- rownames(expr)
        } else {
            genes <- ref_feature_select(expr, ngenes)
        }
    } else {
        genes <- query_genes
    }
    res1 <- clustify(
        expr,
        ref_mat,
        metadata,
        query_genes = genes,
        cluster_col = cluster_col,
        obj_out = FALSE
    )
    res2 <- clustify(
        expr,
        ref_mat,
        metadata,
        query_genes = genes,
        cluster_col = "new_clusters",
        obj_out = FALSE
    )
    o1 <- plot_dims(
        metadata,
        feature = cluster_col,
        x = x_col,
        y = y_col,
        do_label = FALSE,
        do_legend = FALSE
    )
    o2 <- plot_dims(
        metadata,
        feature = "new_clusters",
        x = x_col,
        y = y_col,
        do_label = FALSE,
        do_legend = FALSE
    )
    p1 <- plot_best_call(
        res1,
        metadata,
        cluster_col,
        threshold = threshold,
        do_label = do_label,
        do_legend = do_legend,
        x = x_col,
        y = y_col
    )
    p2 <- plot_best_call(
        res2,
        metadata,
        "new_clusters",
        threshold = threshold,
        do_label = do_label,
        do_legend = do_legend,
        x = x_col,
        y = y_col
    )
    n_orig_clusters <- length(unique(metadata[[cluster_col]]))
    n_new_clusters <- n * length(unique(metadata[[cluster_col]]))

    if (combine) {
        g <- suppressWarnings(cowplot::plot_grid(o1, o2, p1, p2,
            labels = c(
                n_orig_clusters,
                n_new_clusters
            )
        ))
    } else {
        g <- list(
            original_clusters = o1,
            new_clusters = o2,
            original_cell_types = p1,
            new_cell_types = p2
        )
    }

    return(g)
}

#' feature select from reference matrix
#'
#' @param mat reference matrix
#' @param n number of genes to return
#' @param mode the method of selecting features
#' @param rm.lowvar whether to remove lower variation genes first
#' @return vector of genes
#' @examples
#' pbmc_avg <- average_clusters(
#'     mat = pbmc_matrix_small,
#'     metadata = pbmc_meta,
#'     cluster_col = "classified"
#' )
#'
#' ref_feature_select(
#'     mat = pbmc_avg[1:100, ],
#'     n = 5
#' )
#' @export
ref_feature_select <- function(
    mat,
    n = 3000,
    mode = "var",
    rm.lowvar = TRUE) {
    if (rm.lowvar == TRUE) {
        if (!(is.matrix(mat))) {
            mat <- as.matrix(mat)
        }
        v <- matrixStats::rowVars(mat)
        names(v) <- rownames(mat)
        v2 <- v[order(-v)][seq_len(length(v) / 2)]
        mat <- mat[names(v2)[!is.na(names(v2))], ]
    }

    if (mode == "cor") {
        cor_mat <- cor(t(as.matrix(mat)), method = "spearman")
        diag(cor_mat) <- rep(0, times = nrow(cor_mat))
        cor_mat <- abs(cor_mat)
        score <- matrixStats::rowMaxs(cor_mat, na.rm = TRUE)
        names(score) <- rownames(cor_mat)
        score <- score[order(-score)]
        cor_genes <- names(score[seq_len(n)])
    } else if (mode == "var") {
        cor_genes <- names(v2[seq_len(n)])
    }
    cor_genes
}

#' Returns a list of variable genes based on PCA
#'
#' @description  Extract genes, i.e. "features", based on the top
#' loadings of principal components
#' formed from the bulk expression data set
#'
#' @param mat Expression matrix. Rownames are genes,
#' colnames are single cell cluster name, and
#' values are average single cell expression (log transformed).
#' @param pcs Precalculated pcs if available, will skip over processing on mat.
#' @param n_pcs Number of PCs to selected gene loadings from.
#' See the explore_PCA_corr.Rmd vignette for details.
#' @param percentile Select the percentile of absolute values of
#' PCA loadings to select genes from. E.g. 0.999 would select the
#' top point 1 percent of genes with the largest loadings.
#' @param if_log whether the data is already log transformed
#' @return vector of genes
#' @examples
#' feature_select_PCA(
#'     cbmc_ref,
#'     if_log = FALSE
#' )
#' @export
feature_select_PCA <- function(
    mat = NULL,
    pcs = NULL,
    n_pcs = 10,
    percentile = 0.99,
    if_log = TRUE) {
    if (if_log == FALSE) {
        mat <- log(mat + 1)
    }

    # Get the PCs
    if (is.null(pcs)) {
        pca <- prcomp(t(as.matrix(mat)))$rotation
    } else {
        pca <- pcs
    }

    # For the given number PCs, select the genes with the largest loadings
    genes <- c()
    for (i in seq_len(n_pcs)) {
        cutoff <- quantile(abs(pca[, i]), probs = percentile)
        genes <- c(genes, rownames(pca[abs(pca[, i]) >= cutoff, ]))
    }

    return(genes)
}

#' convert gmt format of pathways to list of vectors
#'
#' @param path gmt file path
#' @param cutoff remove pathways with less genes than this cutoff
#' @param sep sep used in file to split path and genes
#' @return list of genes in each pathway
#' @examples
#' gmt_file <- system.file(
#'     "extdata",
#'     "c2.cp.reactome.v6.2.symbols.gmt.gz",
#'     package = "clustifyr"
#' )
#'
#' gene.lists <- gmt_to_list(path = gmt_file)
#' length(gene.lists)
#' @importFrom utils read.csv
#' @export
gmt_to_list <- function(
    path,
    cutoff = 0,
    sep = "\thttp://www.broadinstitute.org/gsea/msigdb/cards/.*?\t") {
    df <- read.csv(path,
        sep = ",",
        header = FALSE,
        col.names = "V1"
    )
    df <- tidyr::separate(df, !!dplyr::sym("V1"),
        sep = sep,
        into = c("path", "genes")
    )
    pathways <- stringr::str_split(
        df$genes,
        "\t"
    )
    names(pathways) <- stringr::str_replace(
        df$path,
        "REACTOME_",
        ""
    )
    if (cutoff > 0) {
        ids <- vapply(pathways, function(i) {
            length(i) < cutoff
        }, FUN.VALUE = logical(1))
        pathways <- pathways[!ids]
    }
    return(pathways)
}

#' plot GSEA pathway scores as heatmap,
#'  returns a list containing results and plot.
#'
#' @param mat expression matrix
#' @param pathway_list a list of vectors, each named for a specific pathway,
#' or dataframe
#' @param n_perm Number of permutation for fgsea function. Defaults to 1000.
#' @param scale convert expr_mat into zscores prior to running GSEA?,
#'  default = TRUE
#' @param topn number of top pathways to plot
#' @param returning to return "both" list and plot, or either one
#' @return list of matrix and plot, or just plot, matrix of GSEA NES values,
#' cell types as row names, pathways as column names
#' @examples
#' gl <- list(
#'     "n" = c("PPBP", "LYZ", "S100A9"),
#'     "a" = c("IGLL5", "GNLY", "FTL")
#' )
#'
#' pbmc_avg <- average_clusters(
#'     mat = pbmc_matrix_small,
#'     metadata = pbmc_meta,
#'     cluster_col = "classified"
#' )
#'
#' plot_pathway_gsea(
#'     pbmc_avg,
#'     gl,
#'     5
#' )
#' @export
plot_pathway_gsea <- function(
    mat,
    pathway_list,
    n_perm = 1000,
    scale = TRUE,
    topn = 5,
    returning = "both") {
    res <- calculate_pathway_gsea(mat,
        pathway_list,
        n_perm,
        scale = scale
    )
    coltopn <-
        unique(cor_to_call_topn(res, topn = topn, threshold = -Inf)$type)
    res[is.na(res)] <- 0

    g <- suppressWarnings(ComplexHeatmap::Heatmap(res[, coltopn],
        column_names_gp = grid::gpar(fontsize = 6)
    ))

    if (returning == "both") {
        return(list(res, g))
    } else if (returning == "plot") {
        return(g)
    } else {
        return(res)
    }
}

#' downsample matrix by cluster or completely random
#'
#' @param mat expression matrix
#' @param n number per cluster or fraction to keep
#' @param keep_cluster_proportions whether to subsample
#' @param metadata data.frame or
#' vector containing cluster assignments per cell.
#' Order must match column order in supplied matrix. If a data.frame
#' provide the cluster_col parameters.
#' @param cluster_col column in metadata with cluster number
#' @return new smaller mat with less cell_id columns
#' @examples
#' set.seed(42)
#' mat <- downsample_matrix(
#'     mat = pbmc_matrix_small,
#'     metadata = pbmc_meta$classified,
#'     n = 10,
#'     keep_cluster_proportions = TRUE
#' )
#' mat[1:3, 1:3]
#' @export
downsample_matrix <- function(
    mat,
    n = 1,
    keep_cluster_proportions = TRUE,
    metadata = NULL,
    cluster_col = "cluster") {
    cluster_info <- metadata
    if (keep_cluster_proportions == FALSE) {
        cluster_ids <- colnames(mat)
        if (n < 1) {
            n <- as.integer(ncol(mat) * n)
        }
        cluster_ids_new <- sample(cluster_ids, n)
    } else {
        if (is.vector(cluster_info)) {
            cluster_ids <- split(colnames(mat), cluster_info)
        } else if (is.data.frame(cluster_info) &
            !is.null(cluster_col)) {
            cluster_ids <- split(colnames(mat), cluster_info[[cluster_col]])
        } else if (is.factor(cluster_info)) {
            cluster_info <- as.character(cluster_info)
            cluster_ids <- split(colnames(mat), cluster_info)
        } else {
            stop("metadata not formatted correctly,
         supply either a  vector or a dataframe",
                call. = FALSE
            )
        }
        if (n < 1) {
            n2 <- vapply(cluster_ids, function(x) {
                as.integer(length(x) * n)
            }, FUN.VALUE = numeric(1))
            n <- n2
        }
        cluster_ids_new <-
            mapply(sample, cluster_ids, n, SIMPLIFY = FALSE)
    }
    return(mat[, unlist(cluster_ids_new)])
}

#' marker selection from reference matrix
#'
#' @param mat reference matrix
#' @param cut an expression minimum cutoff
#' @param arrange whether to arrange (lower means better)
#' @param compto compare max expression to the value of next 1 or more
#' @return dataframe, with gene, cluster, ratio columns
#' @examples
#' ref_marker_select(
#'     cbmc_ref,
#'     cut = 2
#' )
#' @export
ref_marker_select <-
    function(
        mat,
        cut = 0.5,
        arrange = TRUE,
        compto = 1) {
        mat <- mat[!is.na(rownames(mat)), ]
        mat <- mat[Matrix::rowSums(mat) != 0, ]
        ref_cols <- colnames(mat)
        res <-
            apply(mat, 1, marker_select, ref_cols, cut, compto = compto)
        if (is.list(res)) {
            res <- res[!vapply(res, is.null, FUN.VALUE = logical(1))]
        }
        resdf <- t(as.data.frame(res, stringsAsFactors = FALSE))
        if (tibble::has_rownames(as.data.frame(resdf,
            stringsAsFactors = FALSE
        ))) {
            resdf <- tibble::remove_rownames(as.data.frame(resdf,
                stringsAsFactors = FALSE
            ))
        }
        resdf <- tibble::rownames_to_column(
            resdf,
            "gene"
        )
        colnames(resdf) <- c("gene", "cluster", "ratio")
        resdf <-
            dplyr::mutate(resdf,
                ratio = as.numeric(!!dplyr::sym("ratio"))
            )
        if (arrange == TRUE) {
            resdf <- dplyr::group_by(resdf, cluster)
            resdf <-
                dplyr::arrange(resdf, !!dplyr::sym("ratio"),
                    .by_group = TRUE
                )
            resdf <- dplyr::ungroup(resdf)
        }
        resdf
    }

#' decide for one gene whether it is a marker for a certain cell type
#' @param row1 a numeric vector of expression values (row)
#' @param cols a vector of cell types (column)
#' @param cut an expression minimum cutoff
#' @param compto compare max expression to the value of next 1 or more
#' @return vector of cluster name and ratio value
#' @examples
#' pbmc_avg <- average_clusters(
#'     mat = pbmc_matrix_small,
#'     metadata = pbmc_meta,
#'     cluster_col = "classified",
#'     if_log = FALSE
#' )
#'
#' marker_select(
#'     row1 = pbmc_avg["PPBP", ],
#'     cols = names(pbmc_avg["PPBP", ])
#' )
#' @export
marker_select <- function(
    row1,
    cols,
    cut = 1,
    compto = 1) {
    row_sorted <- sort(row1, decreasing = TRUE)
    col_sorted <- names(row_sorted)
    num_sorted <- unname(row_sorted)
    if (num_sorted[1] >= cut) {
        return(c(col_sorted[1], (num_sorted[1 + compto] / num_sorted[1])))
    }
}

#' adapt clustify to tweak score for pos and neg markers
#' @param input single-cell expression matrix
#' @param metadata cell cluster assignments,
#' supplied as a vector or data.frame. If
#' data.frame is supplied then `cluster_col` needs to be set.
#'  Not required if running correlation per cell.
#' @param ref_mat reference expression matrix with positive and
#' negative markers(set expression at 0)
#' @param cluster_col column in metadata that contains cluster ids per cell.
#' Will default to first
#' column of metadata if not supplied.
#' Not required if running correlation per cell.
#' @param cutoff_n expression cutoff where genes ranked below n are
#'  considered non-expressing
#' @param cutoff_score positive score lower than this cutoff will be
#' considered as 0 to not influence scores
#' @return matrix of numeric values, clusters from input as row names,
#'  cell types from ref_mat as column names
#' @examples
#' pn_ref <- data.frame(
#'     "Myeloid" = c(1, 0.01, 0),
#'     row.names = c("CD74", "clustifyr0", "CD79A")
#' )
#'
#' pos_neg_select(
#'     input = pbmc_matrix_small,
#'     ref_mat = pn_ref,
#'     metadata = pbmc_meta,
#'     cluster_col = "classified",
#'     cutoff_score = 0.8
#' )
#' @export
pos_neg_select <- function(
    input,
    ref_mat,
    metadata,
    cluster_col = "cluster",
    cutoff_n = 0,
    cutoff_score = 0.5) {
    suppressWarnings(
        res <- clustify(
            rbind(input, "clustifyr0" = 0.01),
            ref_mat,
            metadata,
            cluster_col = cluster_col,
            per_cell = TRUE,
            verbose = TRUE,
            query_genes = rownames(ref_mat)
        )
    )
    res[is.na(res)] <- 0

    suppressWarnings(
        res2 <- average_clusters(
            t(res),
            metadata,
            cluster_col = cluster_col,
            if_log = FALSE,
            output_log = FALSE
        )
    )
    res2 <- t(res2)

    if (!(is.null(cutoff_score))) {
        res2 <- apply(res2, 2, function(x) {
            maxr <- max(x)
            if (maxr > 0.1) {
                x[x > 0 & x < cutoff_score * maxr] <- 0
            }
            x
        })
    }

    res2
}

#' generate negative markers from a list of exclusive positive markers
#' @param mat matrix or dataframe of markers
#' @return matrix of gene names
#' @examples
#' reverse_marker_matrix(cbmc_m)
#' @export
reverse_marker_matrix <- function(mat) {
    full_vec <- as.vector(t(mat))
    mat_rev <- apply(mat, 2, function(x) {
        full_vec[!(full_vec %in% x)]
    })
    as.data.frame(mat_rev)
}

#' generate pos and negative marker expression matrix from a
#' list/dataframe of positive markers
#' @param mat matrix or dataframe of markers
#' @return matrix of gene expression
#' @examples
#' m1 <- pos_neg_marker(cbmc_m)
#' @export
pos_neg_marker <- function(mat) {
    if (is.data.frame(mat)) {
        mat <- as.list(mat)
    } else if (is.matrix(mat)) {
        mat <- as.list(as.data.frame(mat,
            stringsAsFactors = FALSE
        ))
    } else if (!is.list(mat)) {
        stop("unsupported marker format,
             must be dataframe, matrix, or list",
            call. = FALSE
        )
    }
    genelist <- mat
    typenames <- names(genelist)

    g2 <- lapply(genelist, function(x) {
        data.frame(gene = x, stringsAsFactors = FALSE)
    })

    g2 <- dplyr::bind_rows(g2, .id = "type")
    g2 <- dplyr::mutate(g2, expression = 1)
    g2 <- tidyr::spread(g2, key = "type", value = "expression")
    if (tibble::has_rownames(g2)) {
        g2 <- tibble::remove_rownames(g2)
    }
    g2 <- tibble::column_to_rownames(g2, "gene")
    g2[is.na(g2)] <- 0
    g2
}
#' takes files with positive and negative markers, as described in garnett,
#' and returns list of markers
#' @param filename txt file to load
#' @return list of positive and negative gene markers
#' @examples
#' marker_file <- system.file(
#'     "extdata",
#'     "hsPBMC_markers.txt",
#'     package = "clustifyr"
#' )
#'
#' file_marker_parse(marker_file)
#' @export
file_marker_parse <- function(filename) {
    lines <- readLines(filename)
    count <- 0
    ident_names <- c()
    ident_pos <- c()
    ident_neg <- c()
    for (line in lines) {
        tag <- substr(line, 1, 1)
        if (tag == ">") {
            count <- count + 1
            ident_names[count] <- substr(line, 2, nchar(line))
        } else if (tag == "e") {
            ident_pos[count] <-
                strsplit(substr(line, 12, nchar(line)), split = ", ")
        } else if (tag == "n") {
            ident_neg[count] <-
                strsplit(substr(line, 16, nchar(line)), split = ", ")
        }
    }

    if (!(is.null(ident_neg))) {
        names(ident_neg) <- ident_names
    }
    if (!(is.null(ident_pos))) {
        names(ident_pos) <- ident_names
    }
    list("pos" = ident_pos, "neg" = ident_neg)
}

#' Generate a unique column id for a dataframe
#' @param df dataframe with column names
#' @param id desired id if unique
#' @return character
get_unique_column <- function(df, id = NULL) {
    if (!is.null(id)) {
        out_id <- id
    } else {
        out_id <- "x"
    }

    res <- ifelse(out_id %in% colnames(df),
        make.unique(c(
            colnames(df),
            out_id
        ))[length(c(
            colnames(df),
            out_id
        ))],
        out_id
    )

    res
}

#' Find rank bias
#' @param avg_mat average expression matrix
#' @param ref_mat reference expression matrix
#' @param query_genes original vector of genes used to clustify
#' @return list of matrix of rank diff values
#' @examples
#' avg <- average_clusters(
#'     mat = pbmc_matrix_small,
#'     metadata = pbmc_meta,
#'     cluster_col = "classified",
#'     if_log = FALSE
#' )
#'
#' rankdiff <- find_rank_bias(
#'     avg,
#'     cbmc_ref,
#'     query_genes = pbmc_vargenes
#' )
#' @export
find_rank_bias <- function(
    avg_mat,
    ref_mat,
    query_genes = NULL) {
    # genes shared between matrix and ref
    if (is.null(query_genes)) {
        query_genes <- intersect(
            rownames(avg_mat),
            rownames(ref_mat)
        )
    } else {
        query_genes <- intersect(
            query_genes,
            intersect(
                rownames(avg_mat),
                rownames(ref_mat)
            )
        )
    }

    # rank average expression matrix
    r2 <- t(matrixStats::colRanks(-avg_mat[query_genes, ],
        ties.method = "average"
    ))
    rownames(r2) <- query_genes
    colnames(r2) <- colnames(avg_mat)

    # rank ref matrix
    r1 <- t(matrixStats::colRanks(-ref_mat[query_genes, ],
        ties.method = "average"
    ))
    rownames(r1) <- query_genes
    colnames(r1) <- colnames(ref_mat)

    # actual diff calculations
    rdiff <- lapply(
        rownames(r1),
        function(x) {
            res <- outer(r2[x, ], r1[x, ], FUN = "-")
            # rownames(res) <- colnames(r1)
            # colnames(res) <- colnames(r2)
            res
        }
    )
    names(rdiff) <- rownames(r1)

    rdiff
}

#' Query rank bias results
#' @param bias_list list of rank diff matrix between cluster and reference cell types
#' @param id_mat name of cluster from average cluster matrix
#' @param id_ref name of cell type in reference matrix
#' @return data.frame rank diff values
#' @examples
#' avg <- average_clusters(
#'     mat = pbmc_matrix_small,
#'     metadata = pbmc_meta,
#'     cluster_col = "classified",
#'     if_log = FALSE
#' )
#'
#' rankdiff <- find_rank_bias(
#'     avg,
#'     cbmc_ref,
#'     query_genes = pbmc_vargenes
#' )
#'
#' qres <- query_rank_bias(
#'     rankdiff,
#'     "CD14+ Mono",
#'     "CD14+ Mono"
#' )
#' @export
query_rank_bias <- function(
    bias_list,
    id_mat,
    id_ref) {
    res <- lapply(bias_list, function(x) {
        x[id_mat, id_ref]
    })
    resdf <- data.frame(unlist(res))
    colnames(resdf) <- paste0(id_mat, "_vs_ ", id_ref)
    tibble::rownames_to_column(resdf, "gene")
}

#' Query rank bias results
#' @param bias_df data.frame of rank diff matrix between cluster and reference cell types
#' @param organism for GO term analysis, organism name: human - 'hsapiens', mouse - 'mmusculus'
#' @return ggplot object of distribution and annotated GO terms
#' @examples
#' \dontrun{
#' avg <- average_clusters(
#'     mat = pbmc_matrix_small,
#'     metadata = pbmc_meta,
#'     cluster_col = "classified",
#'     if_log = FALSE
#' )
#'
#' rankdiff <- find_rank_bias(
#'     avg,
#'     cbmc_ref,
#'     query_genes = pbmc_vargenes
#' )
#'
#' qres <- query_rank_bias(
#'     rankdiff,
#'     "CD14+ Mono",
#'     "CD14+ Mono"
#' )
#'
#' g <- plot_rank_bias(
#'     qres
#' )
#' }
#' @export
plot_rank_bias <- function(
    bias_df,
    organism = "hsapiens") {
    genes_all <- stats::setNames(bias_df[[2]], bias_df[[1]])
    genes_high <- bias_df[genes_all >= (length(genes_all) * 0.33), ]
    genes_low <- bias_df[genes_all <= -(length(genes_all) * 0.33), ]
    if (nrow(genes_high) == 0) {
        go_high <- ""
    } else {
        res_high <- suppressMessages(gprofiler2::gost(
            query = genes_high$gene,
            organism = "hsapiens",
            sources = "GO:BP",
            correction_method = "fdr",
            evcodes = TRUE
        ))
        if (is.null(res_high)) {
            go_high <- ""
        } else {
            go_high <- paste0(dplyr::slice(dplyr::filter(res_high[[1]], intersection_size > 1), seq_len(10))$term_name,
                collapse = "\n"
            )
        }
    }
    if (nrow(genes_low) == 0) {
        go_low <- ""
    } else {
        res_low <- suppressMessages(gprofiler2::gost(
            query = genes_low$gene,
            organism = "hsapiens",
            sources = "GO:BP",
            correction_method = "fdr",
            evcodes = TRUE
        ))
        if (is.null(res_low)) {
            go_low <- ""
        } else {
            go_low <- paste0(dplyr::slice(dplyr::filter(res_low[[1]], intersection_size > 1), seq_len(10))$term_name,
                collapse = "\n"
            )
        }
    }

    col <- colnames(bias_df)[2]
    g <- ggplot2::ggplot(bias_df, ggplot2::aes(!!dplyr::sym(col))) +
        ggplot2::geom_bar() +
        ggplot2::geom_bar(data = genes_high, color = "red", fill = "red") +
        ggplot2::geom_bar(data = genes_low, color = "blue", fill = "blue") +
        cowplot::theme_cowplot() +
        ggplot2::theme(
            axis.line.y = ggplot2::element_blank(),
            axis.title.y = ggplot2::element_blank(),
            axis.text.y = ggplot2::element_blank(),
            axis.ticks.y = ggplot2::element_blank()
        ) +
        ggplot2::annotate("text",
            x = max(bias_df[[2]]) * 1.1, y = nrow(bias_df) / 70,
            label = go_high, color = "red", size = 2,
            hjust = 0
        ) +
        ggplot2::annotate("text",
            x = min(bias_df[[2]]) * 1.1, y = nrow(bias_df) / 70,
            label = go_low, color = "blue", size = 2,
            hjust = 1
        ) +
        ggplot2::coord_cartesian(
            clip = "off", xlim = c(
                -max(abs(bias_df[[2]])) * 3,
                max(abs(bias_df[[2]])) * 3
            ),
            ylim = c(0, nrow(bias_df) / 50)
        )
}


#' Given a reference matrix and a list of genes, take the union of
#' all genes in vector and genes in reference matrix
#' and insert zero counts for all remaining genes.
#' @param gene_vector char vector with gene names
#' @param ref_matrix Reference matrix containing cell types vs.
#' gene expression values
#' @return Reference matrix with union of all genes
#' @examples
#' mat <- append_genes(
#'     gene_vector = human_genes_10x,
#'     ref_matrix = cbmc_ref
#' )
#' @export
append_genes <- function(gene_vector, ref_matrix) {
    missing_rows <- setdiff(gene_vector, rownames(ref_matrix))

    zeroExpressionMatrix <- matrix(
        0,
        nrow = length(missing_rows),
        ncol = ncol(ref_matrix)
    )

    rownames(zeroExpressionMatrix) <- missing_rows
    colnames(zeroExpressionMatrix) <- colnames(ref_matrix)

    full_matrix <- rbind(ref_matrix, zeroExpressionMatrix)
    full_matrix <- full_matrix[gene_vector, ]
    full_matrix
}

#' Given a count matrix, determine if the matrix has been either
#' log-normalized, normalized, or contains raw counts
#' @param counts_matrix Count matrix containing scRNA-seq read data
#' @param max_log_value Static value to determine if a matrix is normalized
#' @return String either raw counts, log-normalized or normalized
#' @examples
#' check_raw_counts(pbmc_matrix_small)
#' @export
check_raw_counts <- function(counts_matrix, max_log_value = 50) {
    if (is(counts_matrix, "sparseMatrix")) {
        counts_matrix <- as.matrix(counts_matrix)
    }
    if (!is.matrix(counts_matrix)) {
        counts_matrix <- as.matrix(counts_matrix)
    }
    if (is.integer(counts_matrix)) {
        return("raw counts")
    } else if (is.double(counts_matrix)) {
        if (all(counts_matrix == floor(counts_matrix))) {
            return("raw counts")
        }
        if (max(counts_matrix) > max_log_value) {
            return("normalized")
        } else if (min(counts_matrix) < 0) {
            stop("negative values detected, likely scaled data")
        } else {
            return("log-normalized")
        }
    } else {
        stop("unknown matrix format: ", typeof(counts_matrix))
    }
}

#' Function to combine records into single atlas
#'
#' @param matrix_fns character vector of paths to study matrices stored as .rds files.
#' If a named character vector, then the name will be added as a suffix to the cell type
#' name in the final matrix. If it is not named, then the filename will be used (without .rds)
#' @param genes_fn text file with a single column containing genes and the ordering desired
#' in the output matrix
#' @param matrix_objs Checks to see whether .rds files will be read or R objects in a
#' local environment. A list of environmental objects can be passed to
#' matrx_objs, and that names will be used, otherwise defaults to numbers
#' @param output_fn output filename for .rds file. If NULL the matrix will be returned instead of
#' saving
#' @return Combined matrix with all genes given
#' @examples
#' pbmc_ref_matrix <- average_clusters(
#'     mat = pbmc_matrix_small,
#'     metadata = pbmc_meta,
#'     cluster_col = "classified",
#'     if_log = TRUE # whether the expression matrix is already log transformed
#' )
#' references_to_combine <- list(pbmc_ref_matrix, cbmc_ref)
#' atlas <- build_atlas(NULL, human_genes_10x, references_to_combine, NULL)
#' @export
build_atlas <- function(
    matrix_fns = NULL,
    genes_fn,
    matrix_objs = NULL,
    output_fn = NULL) {
    genesVector <- genes_fn
    if (is.null(matrix_objs) && !is.null(matrix_fns)) {
        ref_mats <- lapply(matrix_fns, readRDS)
        if (is.null(names(matrix_fns))) {
            names(ref_mats) <- stringr::str_remove(basename(matrix_fns), ".rds$")
        } else {
            names(ref_mats) <- names(matrix_fns)
        }
    } else if (is.null(matrix_fns) && !is.null(matrix_objs)) {
        ref_mats <- matrix_objs
        if (is.null(names(matrix_objs))) {
            names(ref_mats) <- seq_len(length(matrix_objs))
        }
    }
    new_mats <- list()
    for (i in seq_along(ref_mats))
    {
        # standardize genes in matrix
        mat <- append_genes(
            gene_vector = genesVector,
            ref_matrix = as.matrix(ref_mats[[i]])
        )
        # get study name
        mat_name <- names(ref_mats)[i]

        # append study name to cell type names
        new_cols <- paste0(
            colnames(mat),
            " (",
            mat_name,
            ")"
        )
        colnames(mat) <- new_cols

        # assign to list
        new_mats[[i]] <- mat
    }

    # cbind a list of matrices
    atlas <- do.call(cbind, new_mats)

    if (!is.null(output_fn)) {
        saveRDS(atlas, output_fn)
    } else {
        return(atlas)
    }
}

#' make combination ref matrix to assess intermixing
#'
#' @param ref_mat reference expression matrix
#' @param if_log whether input data is natural
#' @param sep separator for name combinations
#' @return expression matrix
#' @examples
#' ref <- make_comb_ref(
#'     cbmc_ref,
#'     sep = "_+_"
#' )
#' ref[1:3, 1:3]
#' @export
make_comb_ref <- function(ref_mat,
                          if_log = TRUE,
                          sep = "_and_") {
    if (if_log == TRUE) {
        ref_mat <- expm1(ref_mat)
    }
    combs <-
        utils::combn(
            x = colnames(ref_mat),
            m = 2,
            simplify = FALSE
        )
    comb_mat <-
        vapply(
            combs,
            FUN = function(x) {
                Matrix::rowMeans(ref_mat[, unlist(x)])
            }, FUN.VALUE = numeric(nrow(ref_mat))
        )
    colnames(comb_mat) <-
        vapply(
            combs,
            FUN = function(x) {
                stringr::str_c(unlist(x), collapse = sep)
            }, FUN.VALUE = character(1)
        )
    new_mat <- cbind(ref_mat, comb_mat)
    if (if_log == TRUE) {
        new_mat <- log1p(new_mat)
    }
    new_mat
}

#' Find rank bias
#' @param avg_mat average expression matrix
#' @param ref_mat reference expression matrix
#' @param query_genes original vector of genes used to clustify
#' @param res dataframe of idents, such as output of cor_to_call
#' @param organism for GO term analysis, organism name: human - 'hsapiens', mouse - 'mmusculus'
#' @param plot_name name for saved pdf, if NULL then no file is written (default)
#' @param rds_name name for saved rds of rank_diff, if NULL then no file is written (default)
#' @param expand_unassigned test all ref clusters for unassigned results
#' @return pdf of ggplot object
#' @examples
#' \dontrun{
#' avg <- average_clusters(
#'     pbmc_matrix_small,
#'     pbmc_meta$seurat_clusters
#' )
#' res <- clustify(
#'     input = pbmc_matrix_small,
#'     metadata = pbmc_meta,
#'     ref_mat = cbmc_ref,
#'     query_genes = pbmc_vargenes,
#'     cluster_col = "seurat_clusters"
#' )
#' top_call <- cor_to_call(
#'     res,
#'     metadata = pbmc_meta,
#'     cluster_col = "seurat_clusters",
#'     collapse_to_cluster = FALSE,
#'     threshold = 0.8
#' )
#' res_rank <- assess_rank_bias(
#'     avg,
#'     cbmc_ref,
#'     res = top_call
#' )
#' }
#' @export
assess_rank_bias <- function(
    avg_mat,
    ref_mat,
    query_genes = NULL,
    res,
    organism,
    plot_name = NULL,
    rds_name = NULL,
    expand_unassigned = FALSE) {
    rankdiff <- find_rank_bias(
        avg_mat,
        ref_mat,
        query_genes = query_genes
    )
    rbiases <- list()
    for (i in seq_len(nrow(res))) {
        id <- res[[1]][i]
        ct <- res[[2]][i]
        if (ct == "unassigned") {
            if (expand_unassigned) {
                message("checking unassigned types against every ref type")
                rb <- lapply(colnames(ref_mat), function(x) {
                    query_rank_bias(
                        rankdiff,
                        id,
                        x
                    )
                })
                rbiases[i] <- list(NULL)
                rbiases <- append(rbiases, rb)
            } else {
                rbiases[i] <- list(NULL)
            }
        } else {
            rb <- query_rank_bias(
                rankdiff,
                id,
                ct
            )
            rbiases <- append(rbiases, list(rb))
        }
    }

    if (!(is.null(rds_name))) {
        saveRDS(rbiases, paste0(rds_name, ".rds"))
    }
    message("Using gprofiler2 for GO analyses (internet connection required)")
    plts <- lapply(rbiases, function(x) {
        if (is.null(x)) {
            return(NULL)
        } else {
            plot_rank_bias(x, organism = organism)
        }
    })
    plts <- plts[!unlist(lapply(plts, function(x) is.null(x)))]
    if (!(is.null(plot_name))) {
        p <- cowplot::plot_grid(plotlist = plts, ncol = 1)
        ggplot2::ggsave(paste0(plot_name, ".pdf"),
            p,
            width = 6,
            height = 4 * length(rbiases),
            limitsize = FALSE
        )
    }
    plts
}

#' Distance calculations for spatial coord
#' @param coord dataframe or matrix of spatial coordinates, cell barcode as rownames
#' @param metadata data.frame or vector containing cluster assignments per cell.
#' Order must match column order in supplied matrix. If a data.frame
#' provide the cluster_col parameters.
#' @param cluster_col column in metadata with cluster number
#' @param collapse_to_cluster instead of reporting min distance to cluster per cell, summarize to cluster level
#' @return min distance matrix
#' @examples
#' cbs <- paste0("cb_", 1:100)
#'
#' spatial_coords <- data.frame(
#'     row.names = cbs,
#'     X = runif(100),
#'     Y = runif(100)
#' )
#' group_ids <- sample(c("A", "B"), 100, replace = TRUE)
#' dist_res <- calc_distance(
#'     spatial_coords,
#'     group_ids
#' )
#' @export
calc_distance <- function(
    coord,
    metadata,
    cluster_col = "cluster",
    collapse_to_cluster = FALSE) {
    distm <- as.matrix(stats::dist(coord))
    res <- average_clusters(distm,
        metadata,
        cluster_col,
        if_log = FALSE,
        output_log = FALSE,
        method = "min"
    )
    if (collapse_to_cluster) {
        res2 <- average_clusters(t(res),
            metadata,
            cluster_col,
            if_log = FALSE,
            output_log = FALSE,
            method = "min"
        )
        res2
    } else {
        res
    }
}
NCBI-Hackathons/clustifyR documentation built on Aug. 31, 2024, 5:35 a.m.