Nothing
#----------------------------------------------------------------------------------------------------
#' An S4 class to represent a Pearson solver
#'
#' @include Solver.R
#' @import methods
#'
#' @name PearsonSolver-class
#'
.PearsonSolver <- setClass ("PearsonSolver",contains = "Solver")
#----------------------------------------------------------------------------------------------------
#' Create a Solver class object using Pearson correlation coefficients as the solver
#'
#' @param mtx.assay An assay matrix of gene expression data
#' @param targetGene A designated target gene that should be part of the mtx.assay data
#' @param candidateRegulators The designated set of transcription factors that could be associated
#' with the target gene
#' @param quiet A logical denoting whether or not the solver should print output
#'
#' @return A Solver class object with Pearson correlation coefficients as the solver
#'
#' @seealso \code{\link{solve.Pearson}}, \code{\link{getAssayData}}
#'
#' @family Solver class objects
#'
#' @export
#'
#' @examples
#' load(system.file(package="trena", "extdata/ampAD.154genes.mef2cTFs.278samples.RData"))
#' target.gene <- "MEF2C"
#' tfs <- setdiff(rownames(mtx.sub), target.gene)
#' pearson.solver <- PearsonSolver(mtx.sub, target.gene, tfs)
PearsonSolver <- function(mtx.assay = matrix(), targetGene, candidateRegulators, quiet=TRUE)
{
# Remove the targetGene from candidateRegulators
if(any(grepl(targetGene, candidateRegulators)))
candidateRegulators <- candidateRegulators[-grep(targetGene, candidateRegulators)]
# Check to make sure the matrix contains some of the candidates
candidateRegulators <- intersect(candidateRegulators, rownames(mtx.assay))
stopifnot(length(candidateRegulators) > 0)
obj <- .PearsonSolver(Solver(mtx.assay=mtx.assay,
quiet=quiet,
targetGene=targetGene,
candidateRegulators=candidateRegulators))
# Send a warning if there's a row of zeros
if(!is.na(max(mtx.assay)) & any(rowSums(mtx.assay) == 0))
warning("One or more gene has zero expression; this may yield 'NA' results and warnings when using Pearson correlations")
obj
} #PearsonSolver, the constructor
#----------------------------------------------------------------------------------------------------
#' Show the Pearson Solver
#'
#' @rdname show.PearsonSolver
#' @aliases show.PearsonSolver
#'
#' @param object An object of the class PearsonSolver
#'
#' @return A truncated view of the supplied object
#'
#' @examples
#' load(system.file(package="trena", "extdata/ampAD.154genes.mef2cTFs.278samples.RData"))
#' target.gene <- "MEF2C"
#' tfs <- setdiff(rownames(mtx.sub), target.gene)
#' pearson.solver <- PearsonSolver(mtx.sub, target.gene, tfs)
#' show(pearson.solver)
setMethod('show', 'PearsonSolver',
function(object) {
regulator.count <- length(getRegulators(object))
if(regulator.count > 10){
regulatorString <- paste(getRegulators(object)[1:10], collapse=",")
regulatorString <- sprintf("%s...", regulatorString);
}
else
regulatorString <- paste(getRegulators(object), collapse=",")
msg = sprintf("PearsonSolver with mtx.assay (%d, %d), targetGene %s, %d candidate regulators %s",
nrow(getAssayData(object)), ncol(getAssayData(object)),
getTarget(object), regulator.count, regulatorString)
cat (msg, '\n', sep='')
})
#----------------------------------------------------------------------------------------------------
#' Run the Pearson Solver
#'
#' @rdname solve.Pearson
#' @aliases run.PearsonSolver solve.Pearson
#'
#' @description Given a PearsonSolver object, use the \code{\link{cor}} function
#' to estimate coefficients for each transcription factor as a predictor of the target gene's
#' expression level.
#'
#' @param obj An object of class PearsonSolver
#'
#' @return The set of Pearson Correlation Coefficients between each transcription factor and the target gene.
#'
#' @seealso \code{\link{cor}}, \code{\link{PearsonSolver}}
#'
#' @family solver methods
#'
#' @examples
#' # Load included Alzheimer's data, create a TReNA object with Bayes Spike as solver, and solve
#' load(system.file(package="trena", "extdata/ampAD.154genes.mef2cTFs.278samples.RData"))
#' target.gene <- "MEF2C"
#' tfs <- setdiff(rownames(mtx.sub), target.gene)
#' pearson.solver <- PearsonSolver(mtx.sub, target.gene, tfs)
#' tbl <- run(pearson.solver)
setMethod("run", "PearsonSolver",
function (obj){
mtx <- getAssayData(obj)
target.gene <- getTarget(obj)
tfs <- getRegulators(obj)
# Check that target gene and tfs are all part of the matrix
stopifnot(target.gene %in% rownames(mtx))
stopifnot(all(tfs %in% rownames(mtx)))
# If given no tfs, return nothing
if (length(tfs)==0) return(NULL)
# Don't handle tf self-regulation, so take target gene out of tfs
deleters <- grep(target.gene, tfs)
if(length(deleters) > 0){
tfs <- tfs[-deleters]
}
# If target gene was the only tf, then return nothing
if(length(tfs)==0) return(NULL)
x = t(mtx[tfs,,drop=FALSE])
y = as.vector(t(mtx[target.gene,])) # Make target gene levels into a vector
# Calculate Pearson correlation coefficients
fit <- stats::cor( x = x, y = y)
# Return the coefficients as a data frame
tbl <- data.frame(row.names = rownames(fit)[order(abs(fit), decreasing = TRUE)],
coefficient = fit[order(abs(fit), decreasing = TRUE)])
return(tbl)
})
#----------------------------------------------------------------------------------------------------
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.