Nothing
## ----style-knitr, eval=TRUE, echo=FALSE, results="asis"-----------------------------
BiocStyle::latex()
## ----include=FALSE------------------------------------------------------------------
library(knitr)
opts_chunk$set(
concordance = TRUE,
background = "#f3f3ff"
)
## ----req----------------------------------------------------------------------------
library(TRONCO)
data(aCML)
data(crc_maf)
data(crc_gistic)
data(crc_plain)
## -----------------------------------------------------------------------------------
head(crc_maf[, 1:10])
## ----import.MAF---------------------------------------------------------------------
dataset_maf = import.MAF(crc_maf)
## ----import.MAF.real----------------------------------------------------------------
dataset_maf = import.MAF(crc_maf, merge.mutation.types = FALSE)
## ----import.MAF.box-----------------------------------------------------------------
dataset_maf = import.MAF(crc_maf, filter.fun = function(x){ x['Hugo_Symbol'] == 'APC'} )
## ----import.MAF.crc_maf-------------------------------------------------------------
dataset_maf = import.MAF(crc_maf,
merge.mutation.types = FALSE,
paste.to.Hugo_Symbol = c('MA.protein.change'))
## -----------------------------------------------------------------------------------
crc_gistic
## ----import.GISTIC------------------------------------------------------------------
dataset_gistic = import.GISTIC(crc_gistic)
## -----------------------------------------------------------------------------------
crc_plain
## ----import.genotypes---------------------------------------------------------------
dataset_plain = import.genotypes(crc_plain, event.type='myVariant')
## ----results='hide', eval=FALSE-----------------------------------------------------
# data = cbio.query(
# genes=c('TP53', 'KRAS', 'PIK3CA'),
# cbio.study = 'luad_tcga_pub',
# cbio.dataset = 'luad_tcga_pub_cnaseq',
# cbio.profile = 'luad_tcga_pub_mutations')
## ----view---------------------------------------------------------------------------
view(aCML)
## ----asgenotypes--------------------------------------------------------------------
as.genotypes(aCML)[1:10,5:10]
## ----asevents-----------------------------------------------------------------------
as.events(aCML)[1:5, ]
as.events.in.sample(aCML, sample = 'patient 2')
## ----asgenes------------------------------------------------------------------------
as.genes(aCML)[1:8]
## ----astypes------------------------------------------------------------------------
as.types(aCML)
as.colors(aCML)
## ----asgene-------------------------------------------------------------------------
head(as.gene(aCML, genes='SETBP1'))
## ----assamples-acml-----------------------------------------------------------------
as.samples(aCML)[1:10]
## ----assamples-acml-tet-------------------------------------------------------------
which.samples(aCML, gene='TET2', type='Nonsense point')
## ----asalterations------------------------------------------------------------------
dataset = as.alterations(aCML)
## ----asalterations.view-------------------------------------------------------------
view(dataset)
## ----number-------------------------------------------------------------------------
ngenes(aCML)
nevents(aCML)
nsamples(aCML)
ntypes(aCML)
npatterns(aCML)
## ----onco, fig.show='hide', fig.width=6, fig.height=5-------------------------------
oncoprint(aCML)
## ----oncocl, fig.show='hide', fig.width=5, fig.height=5,results='hide'--------------
oncoprint(aCML,
legend = FALSE,
samples.cluster = TRUE,
gene.annot = list(one = list('NRAS', 'SETBP1'), two = list('EZH2', 'TET2')),
gene.annot.color = 'Set2',
genes.cluster = TRUE)
## ----stages-------------------------------------------------------------------------
stages = c(rep('stage 1', 32), rep('stage 2', 32))
stages = as.matrix(stages)
rownames(stages) = as.samples(aCML)
dataset = annotate.stages(aCML, stages = stages)
has.stages(aCML)
head(as.stages(dataset))
## -----------------------------------------------------------------------------------
head(as.stages(dataset))
## ----onco-stages, fig.show='hide', fig.width=6, fig.height=5, results='hide'--------
oncoprint(dataset, legend = FALSE)
## ----onco-clus2, fig.show='hide', fig.width=6, fig.height=5, results='hide'---------
oncoprint(dataset, group.samples = as.stages(dataset))
## ----pathway------------------------------------------------------------------------
pathway = as.pathway(aCML,
pathway.genes = c('SETBP1', 'EZH2', 'WT1'),
pathway.name = 'MyPATHWAY',
pathway.color = 'red',
aggregate.pathway = FALSE)
## ----onco-pathway, fig.show='hide', fig.width=6.5, fig.height=2, results='hide'-----
oncoprint(pathway, title = 'Custom pathway', font.row = 8, cellheight = 15, cellwidth = 4)
## ----onco-pathway-viz, fig.show='hide', fig.width=6.5, fig.height=1.8---------------
pathway.visualization(aCML,
pathways=list(P1 = c('TET2', 'IRAK4'), P2=c('SETBP1', 'KIT')),
aggregate.pathways=FALSE,
font.row = 8)
## ----onco-pathway-viz2, fig.show='hide', fig.width=6.5, fig.height=1, results='hide'----
pathway.visualization(aCML,
pathways=list(P1 = c('TET2', 'IRAK4'), P2=c('SETBP1', 'KIT')),
aggregate.pathways = TRUE,
font.row = 8)
## ----pathway-alt, eval=FALSE--------------------------------------------------------
# library(rWikiPathways)
# # quotes inside query to require both terms
# my.pathways <- findPathwaysByText('SETBP1 EZH2 TET2 IRAK4 SETBP1 KIT')
# human.filter <- lapply(my.pathways, function(x) x$species == "Homo sapiens")
# my.hs.pathways <- my.pathways[unlist(human.filter)]
# # collect pathways idenifiers
# my.wpids <- sapply(my.hs.pathways, function(x) x$id)
#
# pw.title<-my.hs.pathways[[1]]$name
# pw.genes<-getXrefList(my.wpids[1],"H")
## ----wikipathways, eval=FALSE-------------------------------------------------------
# browseURL(getPathwayInfo(my.wpids[1])[2])
# browseURL(getPathwayInfo(my.wpids[2])[2])
# browseURL(getPathwayInfo(my.wpids[3])[2])
## ----rename-------------------------------------------------------------------------
dataset = rename.gene(aCML, 'TET2', 'new name')
dataset = rename.type(dataset, 'Ins/Del', 'new type')
as.events(dataset, type = 'new type')
## ----join1--------------------------------------------------------------------------
dataset = join.events(aCML,
'gene 4',
'gene 88',
new.event='test',
new.type='banana',
event.color='yellow')
## ----join2--------------------------------------------------------------------------
dataset = join.types(dataset, 'Nonsense point', 'Nonsense Ins/Del')
as.types(dataset)
## ----delete-------------------------------------------------------------------------
dataset = delete.gene(aCML, gene = 'TET2')
dataset = delete.event(dataset, gene = 'ASXL1', type = 'Ins/Del')
dataset = delete.samples(dataset, samples = c('patient 5', 'patient 6'))
dataset = delete.type(dataset, type = 'Missense point')
view(dataset)
## ----assamples-assamples------------------------------------------------------------
dataset = samples.selection(aCML, samples = as.samples(aCML)[1:3])
view(dataset)
## ----eventsselection----------------------------------------------------------------
dataset = events.selection(aCML, filter.freq = .05,
filter.in.names = c('EZH1','EZH2'),
filter.out.names = 'SETBP1')
## ----eventsselection2---------------------------------------------------------------
as.events(dataset)
## ----onco-ex-sel, fig.show='hide', fig.width=7, fig.height=5.5, results='hide'------
library(gridExtra)
grid.arrange(
oncoprint(as.alterations(aCML, new.color = 'brown3'),
cellheight = 6, cellwidth = 4, gtable = TRUE,
silent = TRUE, font.row = 6)$gtable,
oncoprint(dataset, cellheight = 6, cellwidth = 4,
gtable = TRUE, silent = TRUE, font.row = 6)$gtable,
ncol = 1)
## -----------------------------------------------------------------------------------
dataset = change.color(aCML, 'Ins/Del', 'dodgerblue4')
dataset = change.color(dataset, 'Missense point', '#7FC97F')
as.colors(dataset)
## -----------------------------------------------------------------------------------
consolidate.data(dataset)
## ----other-alterations--------------------------------------------------------------
alterations = events.selection(as.alterations(aCML), filter.freq = .05)
## -----------------------------------------------------------------------------------
gene.hypotheses = c('KRAS', 'NRAS', 'IDH1', 'IDH2', 'TET2', 'SF3B1', 'ASXL1')
aCML.clean = events.selection(aCML,
filter.in.names=c(as.genes(alterations), gene.hypotheses))
aCML.clean = annotate.description(aCML.clean,
'CAPRI - Bionformatics aCML data (selected events)')
## ----onco-edited, fig.show='hide', fig.width=8, fig.height=5.5, results='hide'------
oncoprint(aCML.clean, gene.annot = list(priors = gene.hypotheses), sample.id = TRUE)
## -----------------------------------------------------------------------------------
aCML.hypo = hypothesis.add(aCML.clean, 'NRAS xor KRAS', XOR('NRAS', 'KRAS'))
## ----eval=FALSE---------------------------------------------------------------------
# aCML.hypo = hypothesis.add(aCML.hypo, 'NRAS or KRAS', OR('NRAS', 'KRAS'))
## ----onco-kras-nras, fig.show='hide', fig.width=6, fig.height=1, results='hide'-----
oncoprint(events.selection(aCML.hypo,
filter.in.names = c('KRAS', 'NRAS')),
font.row = 8,
ann.hits = FALSE)
## -----------------------------------------------------------------------------------
aCML.hypo = hypothesis.add(aCML.hypo, 'SF3B1 xor ASXL1', XOR('SF3B1', XOR('ASXL1')),
'*')
## -----------------------------------------------------------------------------------
as.events(aCML.hypo, genes = 'TET2')
aCML.hypo = hypothesis.add(aCML.hypo,
'TET2 xor IDH2',
XOR('TET2', 'IDH2'),
'*')
aCML.hypo = hypothesis.add(aCML.hypo,
'TET2 or IDH2',
OR('TET2', 'IDH2'),
'*')
## ----onco-tet2-idh2, fig.show='hide', fig.width=7, fig.height=2, results='hide'-----
oncoprint(events.selection(aCML.hypo,
filter.in.names = c('TET2', 'IDH2')),
font.row = 8,
ann.hits = FALSE)
## -----------------------------------------------------------------------------------
aCML.hypo = hypothesis.add.homologous(aCML.hypo)
## ----hypo-add-hom-------------------------------------------------------------------
dataset = hypothesis.add.group(aCML.clean, OR, group = c('SETBP1', 'ASXL1', 'CBL'))
## ----onco-priors, fig.show='hide', fig.width=8, fig.height=6.5,results='hide'-------
oncoprint(aCML.hypo, gene.annot = list(priors = gene.hypotheses), sample.id = TRUE,
font.row=10, font.column=5, cellheight=15, cellwidth=4)
## ----n-hypo-pat---------------------------------------------------------------------
npatterns(dataset)
nhypotheses(dataset)
## ----as-patterns--------------------------------------------------------------------
as.patterns(dataset)
as.events.in.patterns(dataset)
as.genes.in.patterns(dataset)
as.types.in.patterns(dataset)
## ----as-hypotheses------------------------------------------------------------------
head(as.hypotheses(dataset))
dataset = delete.hypothesis(dataset, event = 'TET2')
dataset = delete.pattern(dataset, pattern = 'OR_ASXL1_CBL')
## ----pattern-plot,fig.show='hide', fig.width=4, fig.height=2.2----------------------
tronco.pattern.plot(aCML,
group = as.events(aCML, genes=c('SETBP1', 'ASXL1')),
to = c('CSF3R', 'Missense point'),
legend.cex=0.8,
label.cex=1.0)
## ----pattern-plot-circos,fig.show='hide',results='hide', fig.width=6, fig.height=6----
tronco.pattern.plot(aCML,
group = as.events(aCML, genes=c('TET2', 'ASXL1')),
to = c('CSF3R', 'Missense point'),
legend = 1.0,
label.cex = 0.8,
mode='circos')
## ----delete-description, results='hide', include=FALSE------------------------------
aCML.hypo = annotate.description(aCML.hypo, '')
aCML.clean = annotate.description(aCML.clean, '')
## ----model-capri--------------------------------------------------------------------
model.capri = tronco.capri(aCML.hypo, boot.seed = 12345, nboot = 5)
model.capri = annotate.description(model.capri, 'CAPRI - aCML')
## ----caprese-plot-------------------------------------------------------------------
model.caprese = tronco.caprese(aCML.clean)
model.caprese = annotate.description(model.caprese, 'CAPRESE - aCML')
## ----edmonds-plot-------------------------------------------------------------------
model.edmonds = tronco.edmonds(aCML.clean, nboot = 5, boot.seed = 12345)
model.edmonds = annotate.description(model.edmonds, 'MST Edmonds - aCML')
## ----gabow-plot---------------------------------------------------------------------
model.gabow = tronco.gabow(aCML.clean, nboot = 5, boot.seed = 12345)
model.gabow = annotate.description(model.gabow, 'MST Gabow - aCML')
## ----chow-liu-plot------------------------------------------------------------------
model.chowliu = tronco.chowliu(aCML.clean, nboot = 5, boot.seed = 12345)
model.chowliu = annotate.description(model.chowliu, 'MST Chow Liu - aCML')
## ----prim-plot----------------------------------------------------------------------
model.prim = tronco.prim(aCML.clean, nboot = 5, boot.seed = 12345)
model.prim = annotate.description(model.prim, 'MST Prim - aCML data')
## -----------------------------------------------------------------------------------
view(model.capri)
## ----capri-plot,fig.show='hide',fig.width=4,fig.height=4,warning=FALSE--------------
tronco.plot(model.capri,
fontsize = 12,
scale.nodes = 0.6,
confidence = c('tp', 'pr', 'hg'),
height.logic = 0.25,
legend.cex = 0.35,
pathways = list(priors = gene.hypotheses),
label.edge.size = 10)
## ----mst-plot,fig.show='hide',results='hide',fig.width=7,fig.height=7,warning=FALSE----
par(mfrow = c(2,2))
tronco.plot(model.caprese, fontsize = 22, scale.nodes = 0.6, legend = FALSE)
tronco.plot(model.edmonds, fontsize = 22, scale.nodes = 0.6, legend = FALSE)
tronco.plot(model.chowliu, fontsize = 22, scale.nodes = 0.6, legend.cex = .7)
tronco.plot(model.prim, fontsize = 22, scale.nodes = 0.6, legend = FALSE)
## -----------------------------------------------------------------------------------
as.data.frame(as.parameters(model.capri))
has.model(model.capri)
dataset = delete.model(model.capri)
## -----------------------------------------------------------------------------------
str(as.adj.matrix(model.capri))
## -----------------------------------------------------------------------------------
marginal.prob = as.marginal.probs(model.capri)
head(marginal.prob$capri_bic)
## -----------------------------------------------------------------------------------
joint.prob = as.joint.probs(model.capri, models='capri_bic')
joint.prob$capri_bic[1:3, 1:3]
## -----------------------------------------------------------------------------------
conditional.prob = as.conditional.probs(model.capri, models='capri_bic')
head(conditional.prob$capri_bic)
## -----------------------------------------------------------------------------------
str(as.confidence(model.capri, conf = c('tp', 'pr', 'hg')))
## ----selective-advantage------------------------------------------------------------
as.selective.advantage.relations(model.capri)
## -----------------------------------------------------------------------------------
model.boot = tronco.bootstrap(model.capri, nboot = 3, cores.ratio = 0)
model.boot = tronco.bootstrap(model.boot, nboot = 3, cores.ratio = 0, type = 'statistical')
## ----figplotboot,fig.show='hide',fig.width=4,fig.height=4,warning=FALSE-------------
tronco.plot(model.boot,
fontsize = 12,
scale.nodes = .6,
confidence=c('sb', 'npb'),
height.logic = 0.25,
legend.cex = .35,
pathways = list(priors= gene.hypotheses),
label.edge.size=10)
## ----bootstrap-table----------------------------------------------------------------
as.bootstrap.scores(model.boot)
view(model.boot)
## ----hboot,fig.show='hide',fig.width=7,fig.height=7---------------------------------
pheatmap(keysToNames(model.boot, as.confidence(model.boot, conf = 'sb')$sb$capri_aic) * 100,
main = 'Statistical bootstrap scores for AIC model',
fontsize_row = 6,
fontsize_col = 6,
display_numbers = TRUE,
number_format = "%d"
)
## ----kfold--------------------------------------------------------------------------
model.boot = tronco.kfold.eloss(model.boot)
model.boot = tronco.kfold.prederr(model.boot, runs = 2, cores.ratio = 0)
model.boot = tronco.kfold.posterr(model.boot, runs = 2, cores.ratio = 0)
## ----as-kfold-ex--------------------------------------------------------------------
as.kfold.eloss(model.boot)
as.kfold.prederr(model.boot)
as.kfold.posterr(model.boot)
## ----as-kfold-tab-------------------------------------------------------------------
tabular = function(obj, M){
tab = Reduce(
function(...) merge(..., all = TRUE),
list(as.selective.advantage.relations(obj, models = M),
as.bootstrap.scores(obj, models = M),
as.kfold.prederr(obj, models = M),
as.kfold.posterr(obj,models = M)))
# merge reverses first with second column
tab = tab[, c(2,1,3:ncol(tab))]
tab = tab[order(tab[, paste(M, '.NONPAR.BOOT', sep='')], na.last = TRUE, decreasing = TRUE), ]
return(tab)
}
head(tabular(model.boot, 'capri_bic'))
## ----plot-conf,fig.show='hide',fig.width=4,fig.height=4,warning=FALSE---------------
tronco.plot(model.boot,
fontsize = 12,
scale.nodes = .6,
confidence=c('npb', 'eloss', 'prederr', 'posterr'),
height.logic = 0.25,
legend.cex = .35,
pathways = list(priors= gene.hypotheses),
label.edge.size=10)
## ----graphml, fig.show='hide',warning=FALSE-----------------------------------------
export.graphml(model.boot,
file = 'graph.gml',
fontsize = 12,
scale.nodes = .6,
height.logic = 0.25)
## ----sessioninfo, results='asis', eval=TRUE, echo=FALSE-----------------------------
toLatex(sessionInfo())
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.