#' @name pcorMat
#' @aliases pcorMat,StefansExpressionSet-method
#' @rdname pcorMat-methods
#' @docType methods
#' @description calculate a p_value matrix for the data object THIS FUNCTION IS NOT DOING THE RIGTH
#' @description THING BROKEN
#' @param x the StefansExpressionSet varibale
#' @param sd_cut the cut off value for the sd check
#' @param method any method supported by \code{\link[stats]{cor.test}}
#' @param geneNameCol the name of the gene column (gene_name)
#' @param groupCol the column name of the grouping variable in the samples table
#' @param name the name of the analysis
#' @title description of function corMat.Pvalues
#' @export
setGeneric('pcorMat', ## Name
function ( x, sd_cut=1, method='spearman', geneNameCol='gene_name', groupCol=NULL, name='tmp' ) { ## Argumente der generischen Funktion
standardGeneric('pcorMat') ## der Aufruf von standardGeneric sorgt für das Dispatching
}
)
setMethod('pcorMat', signature = c ( 'StefansExpressionSet') ,
definition = function ( x, sd_cut=1, method='spearman', geneNameCol='gene_name', groupCol=NULL, name='tmp' ) {
# TODO: implement the p value calculation!
d <- reduce.Obj( x, rownames(x@data)[which( apply(x@data,1,sd) > sd_cut)], name =name )
if ( ! is.null(groupCol) ){
ret <- list()
names <- unique(d$samples[,groupCol])
for ( i in 1:length(names)) {
a <- subset( d, column=groupCol, value=names[i], name= paste(d$name,names[i],sep='_'), mode='equals' )
ret[[i]] = corMat( a, sd_cut= sd_cut,method=method, geneNameCol=geneNameCol )
}
names(ret) <- names
ret
}
else {
n = nrow(d$data)
print ( paste(d$name,": I create a",n,'x', n,'matrix') )
ret <- cor(t(d$data), method=method )
colnames(ret) <- rownames(ret) <- forceAbsoluteUniqueSample( as.vector(d$annotation[,geneNameCol]) )
ret
}
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.