#' Ge the class organization of directory.
#'
#' Find the classes organization of a directory, and return a
#' table. This function is called by proFIAset, and is useful
#' to check the structure which will be considered by a proFIAset object.
#'
#' @export
#' @param files The path to the experiment directory/
#' @return a table containing two columns, the absolute paths
#' of the files and the classes of the acquisition, as given by
#' subdirectories.
#' @aliases acquisitionDirectory
#' @examples
#' if(require(plasFIA)){
#' path<-system.file(package="plasFIA","mzML")
#' tabClasses<-acquisitionDirectory(path)
#' tabClasses
#' }
acquisitionDirectory <- function(files = NULL) {
if (!file.exists(files))
stop("path must be a valid directory or file.")
###Case where it is a single path.
if (!dir.exists(files))
return(NA)
filepattern <-
c(
"[Cc][Dd][Ff]",
"[Nn][Cc]",
"([Mm][Zz])?[Xx][Mm][Ll]",
"[Mm][Zz][Dd][Aa][Tt][Aa]",
"[Mm][Zz][Mm][Ll]"
)
filepattern <-
paste(paste("\\.", filepattern, "$", sep = ""), collapse = "|")
if (is.null(files))
files <- getwd()
info <- file.info(files)
listed <- list.files(
files[info$isdir],
pattern = filepattern,
recursive = TRUE,
full.names = TRUE
)
if (length(listed) == 0)
stop("impossible to find any supported data format.")
groupf <- dirname(listed)
allgroup <- unique(groupf)
lg <- character()
for (i in 1:length(allgroup)) {
lg <- c(lg, listed[which(groupf == allgroup[i])])
}
message(
length(allgroup),
" directories have been found : ",
paste(basename(allgroup), collapse = " "),
"\n"
)
df <- data.frame(
rname <- as.character(lg),
group <- as.factor(basename(groupf)),
stringsAsFactors =
FALSE
)
colnames(df) <- c("path","class")
return(df)
}
#' @export
setGeneric("phenoClasses", function(object, ...)
standardGeneric("phenoClasses"))
# #' Extract the classes table from a proFIAset object
# #'
# #' Extract the classes table from a proFIAset object.
# #'
# #' @export
# #' @param object A proFIAset object.
# #' @return a table containing two columns, the absolute paths
# #' of the files and the classes of the acquisition, as given by
# #' subdirectories.
# #' @aliases getPhenoClasses getPhenoClasses,proFIAset-method
# #' @examples
# #' if(require("plasFIA")){
# #' data(plasSet)
# #' tabClasses<-getPhenoClasses(plasSet)
# #' }
#' @describeIn proFIAset Extract the classes and the paths of the samples.
#' @export
setMethod("phenoClasses", "proFIAset", function(object) {
return(object@classes)
})
#' @export
setGeneric("dataMatrix", function(object, ...)
standardGeneric("dataMatrix"))
# #' Extract the data matrix from a proFIAset object
# #'
# #' Extract the data matrix from a proFIAset object. If
# #' the matrix have not been created, it is created.
# #'
# #' @export
# #' @param object A proFIAset object.
# #' @param ... Supplementary arguments to be passed to makeDataMatrix
# #' if the matrix have not been created.
# #' @return a matrix with groups as rows and samples as columns.
# #' @aliases dataMatrix dataMatrix,proFIAset-method
# #' @seealso \code{\link{exportPeakTable}} for a more personnalized output.
# #' @examples
# #' if(require("plasFIA")){
# #' data(plasSet)
# #' dataMatrix<-dataMatrix(plasSet)
# #' }
#' @describeIn proFIAset Extract the dataMatrix containg variables as rows and samples as columns
#' @export
setMethod("dataMatrix", "proFIAset", function(object) {
if (nrow(object@dataMatrix) == 0) {
stop("Use makeDataMatrix to create the data matrix.")
}
return(object@dataMatrix)
})
#' @export
setGeneric("groupMatrix", function(object, ...)
standardGeneric("groupMatrix"))
# #' Extract the group matrix from a proFIAset object
# #'
# #' Extract the group matrix from a proFIAset object.
# #' We recommend to use the \code{\link{exportPeakTable}}
# #' function for a more formalized output.
# #'
# #' @export
# #' @param object A proFIAset object.
# #' @return A matrix with groups as rows and informations on group as columns.
# #' See the slot group of the proFIAset class \code{\link{proFIAset-class}} for more detail.
# #' @aliases groupMatrix groupMatrix,proFIAset-method
# #' @seealso \code{\link{exportPeakTable}} for a more personnalized output and
# #' \code{\link{proFIAset-class}} for a description of the columns of the group matrix.
# #' @examples
# #' if(require("plasFIA")){
# #' data(plasSet)
# #' groupMatrix<-groupMatrix(plasSet)
# #' }
#' @describeIn proFIAset Extract the matrix of group, see \code{\link{exportPeakTable}} for better output.
#' @export
setMethod("groupMatrix", "proFIAset", function(object) {
return(object@group)
})
# #' Extract the peaks matrix from a proFIAset object
# #'
# #' Extract all the peak detected from an FIA acquisition.
# #' The output may be space consuming.
# #'
# #' @export
# #' @param object A proFIAset object.
# #' @return a matrix with peaks as rows and informations on peaks as columns.
# #' @aliases peaks peaks,proFIAset-method
# #' @seealso \code{\link{proFIAset-class}} to see the fieds on the peaks table.
# #' @examples
# #' if(require("plasFIA")){
# #' data(plasSet)
# #' peaksMatrix<-peaks(plasSet)
# #' }
#' @describeIn proFIAset Extract all the signals detected in individual samples.
#' @export
setMethod("peaks", "proFIAset", function(object) {
return(object@peaks)
})
#' @export
setGeneric("injectionPeaks", function(object, ...)
standardGeneric("injectionPeaks"))
# #' Extract the injection peaks from a proFIAset object
# #'
# #' Extract all the regressed peak table from a proFIAset object.
# #'
# #' @export
# #' @param object A proFIAset object.
# #' @return a list with the injection peak correspoing to each sample.
# #' @aliases injectionPeaks injectionPeaks,proFIAset-method
# #' @seealso \code{\link{proFIAset-class}} to see the fieds on the peaks table.
# #' @examples
# #' if(require("plasFIA")){
# #' data(plasSet)
# #' lInjPeak<-injectionPeaks(plasSet)
# #' }
#' @describeIn proFIAset Extract all the regressed injection peaks.
#' @export
setMethod("injectionPeaks", "proFIAset", function(object) {
return(object@injectionPeaks)
})
#' Process FIA experiment.
#'
#' Processes an experiment ordered as a tree of files, and return a
#' proFIAset object. TO check the funirshed structure you may use the
#' \code{\link{acquisitionDirectory}} function.
#' @export
#'
#' @param path The path of the files to be processed.
#' @param ppm The tolerance of the algorithms in deviation between scans.
#' @param parallel Shall parallelism using \pkg{BiocParallel} be used.
#' @param noiseEstimation Shall noise be estimated (recommended)
#' @param BPPARAM A BiocParallelParam object to be used for parallelism
#' if parallel is TRUE.
#' @param graphical Shall the plot of the regressed injection peak be shown.
#' @param ... Supplementary arguments to be passed to findFIAsignal, see
#' \code{\link{findFIASignal}}.
#' @aliases proFIAset
#' @seealso To obtain more detail about the output see \code{\link{proFIAset-class}}.
#' @return A proFIAset object.
#' @examples
#' if(require("plasFIA")){
#'
#' pathplas<-system.file(package="plasFIA","mzML")
#'
#' #Parameters are defined.
#' ppm<-2
#'
#' plasSet<-proFIAset(pathplas,ppm=ppm,parallel=FALSE)
#' plasSet
#'
#' ###An example using parallelism with a snow cluster using BiocParallel package.
#' \dontrun{plasSet<-proFIAset(pathplas,ppm=ppm,parallel=TRUE,BPPARAM=bpparam("SnowParam"))}
#' }
proFIAset <-
function(path,
ppm,
parallel = TRUE,
BPPARAM = NULL,
noiseEstimation = TRUE,
graphical=FALSE,
...) {
pFIA <- new("proFIAset")
pFIA@classes <- acquisitionDirectory(path)
#print(object@classes)
pFIA@path <- path
message(
nrow(pFIA@classes),
" files found in directories ",
unique(as.character(pFIA@classes[, 2])),
"\n",
sep =
" "
)
if(requireNamespace("BiocParallel")&is.null(BPPARAM)){
BPPARAM <- bpparam()
}
##Quick opening of two random files to evaluate intensity.
vtab <- c(1,cumsum(table(pFIA@classes[,2])))
vmint <- apply(pFIA@classes[vtab,],1,function(x){
requireNamespace("xcms")
vxraw <- xcmsRaw(x[1])
max(vxraw@env$intensity)
})
vmint <- 2*max(vmint)
###The nois emodel is estimated.
nes <- NULL
if (noiseEstimation) {
if (parallel & requireNamespace("BiocParallel")) {
message("Package BiocParallel used.")
nes <- estimateNoiseMS(
pFIA@classes[, 1],
ppm = ppm,
parallel = parallel,
BPPARAM = BPPARAM,
maxInt=vmint
)
} else{
if (parallel) {
warning(
"BioCParallel package is not installed, impossible to use parallelism. Single core is used."
)
}
nes <- estimateNoiseMS(pFIA@classes[, 1],
ppm = ppm,
parallel =
FALSE)
}
}
nes <- fitModel(nes,absThreshold = NULL)
if(is.na(nes)){
nes <- estimateNoiseMS(pFIA@classes[, 1],
ppm = ppm, minInt = 50,
parallel =
FALSE)
nes <- fitModel(nes,absThreshold = NULL)
}
if(graphical){
plotNoise(nes)
}
pFIA@noiseEstimation <- nes
###We keep all the bands if possible.
lRes <- list()
if (parallel & requireNamespace("BiocParallel")) {
if (is.null(BPPARAM))
BPPARAM <- bpparam()
lRes <- bplapply(
as.list(pFIA@classes[,1]),
openAndFindPeaks,
ppm = ppm,
es = pFIA@noiseEstimation,
BPPARAM = BPPARAM,
... =
...
)
} else{
if (parallel) {
warning(
"BioCParallel package is not installed, impossible to use parallelism."
)
}
lRes <- sapply(
pFIA@classes[, 1],
openAndFindPeaks,
simplify = FALSE,
ppm = ppm,
es = pFIA@noiseEstimation,
... =
...
)
}
###The returned matrix is a res.
matRes <- lapply(lRes, function(x) {
x$signals
})
lPeaks <- lapply(lRes, function(x) {
x$injectionPeak
})
lBegin <- sapply(lRes, function(x) {
x$injectionScan
})
nPeaks <- lapply(matRes, nrow)
vecClass <- rep(as.numeric(1:nrow(pFIA@classes)), times = unlist(nPeaks))
matRes <- do.call(rbind, matRes)
oldN <- colnames(matRes)
matRes <- cbind(matRes, vecClass)
colnames(matRes) = c(oldN, "sample")
pFIA@peaks <- matRes
pFIA@step <- "Peaks_extracted"
pFIA@injectionPeaks <- lPeaks
pFIA@injectionScan <- lBegin
message(paste(
"processus finished",
nrow(pFIA@classes),
"samples treated",
nrow(pFIA@peaks),
"peaks found."
))
pFIA
}
#' @include KNN_T.R
setMethod("show", "proFIAset", function(object) {
if(nrow(object@classes)==0){
cat("An empty proFIAset object.\n")
return(invisible(NULL))
}
cat("A \"proFIAset\" object containing ",
length(unique(object@classes[, 2])),
" classes.\n")
progress <- switch(object@step,
Peak_extracted = "The data have been peak picked.",
Samples_grouped = "Grouping has been done between samples.",
Matrix_created = "Data matrix has been created.",
Fillpeaks = "Missing values have been imputed.")
cat(progress, "\n")
if (nrow(object@peaks) > 0) {
cat(nrow(object@peaks), " peaks detected.\n")
}
if (nrow(object@group) > 0) {
cat(nrow(object@group), " features have been grouped.\n")
}
if (nrow(object@dataMatrix) > 0) {
cat("The data matrix is avalaible.\n")
}
memsize <- object.size(object)
cat("Memory usage:", signif(memsize / 2 ^ 20, 3), "MB\n")
})
switchSummaryPeak<-function(x){
if(is.na(x)){
return("Shifted in time")
}
if(x==0){
return("Well-behaved peak")
}
if(x==1){
return("Heavy shape distorsion (corSampPeak<0.2)")
}
###Thess case are never uspposed to happens.
if(x==2){
return("Shifted in time")
}
if(x==3){
return("Shifted in time and matrix effect")
}
}
#' Plot a summary of an FIA experiment.
#'
#' Plot a summary of an FIA acquisition. This summary aims to provides an overview of the
#' FIA acquisition and the processinf of FIA acquisition. It includes the following graphs :
#' \itemize{
#' \item Barplot A barplot giving the number of peak detected in each sample. The number
#' of shifted peak is indicated, which can indicate wrong FIA-acquisition, as well as the
#' number of peak badly with a low correlation with the injection peak, which can indicate
#' a strong matrix effect.
#' \item Injection_Peaks A representation of all the injection peaks of the acquisition, a
#' greatly different peak in th einjection may indicate an issue with the injection, or a problem
#' of regression. If the peaks seems all different, try to use \link{proFIAset} with the f
#' paramter on TIC, to avoid regression.
#' \item Density A density plot of the m/z of all the features found. A missing interval at the end
#' of the mz range may indicate a too low ppm parameter, while a missing interval at the beginning
#' of the mz range may indicate a too low dmz parameter.
#' \item PCA A PCA plot to obtain a quick diagnostic of the data. The PCA plot is supposed to be different
#' before and after imputation.
#' }
#'
#' @export
#' @param x A proFIAset object.
#' @param type Shall the plotting be done by sample or by class for the barplot ?
#' @param ... Not used at the moment.
#'
#' @aliases plot.FIA plot,proFIAset-method plot,proFIAset,ANY,ANY-method
#' @return Nothing
#' @examples
#' if(require("plasFIA")){
#' data(plasSet)
#'
#'
#' ####Diagnostic plot after imputation
#' plot(plasSet)
#'
#' ####The same plot by classes.
#' plot(plasSet,type="class")
#'
#' ####Diagnostic plot before imputation
#' plasSet <- makeDataMatrix(plasSet)
#' plot(plasSet)
#'
#' }
#' @rdname plot
setMethod("plot", "proFIAset",function(x, type=c("sample","class"),...){
vstep <- 0
title_pca <- NULL
vomar <- par("mar")
par(mar=c(3.1,2.1,2.1,1.1), font = 2, font.axis = 2, font.lab = 2)
if(x@step=="Peak_extracted"){
layout(matrix(1:2,ncol=2))
vstep <- 1
}
if(x@step=="Samples_grouped"){
layout(matrix(c(1,1,2,3),ncol=2,byrow=TRUE))
vstep <- 2
}
if(x@step %in% ("Matrix_created")){
layout(matrix(c(1,1,1,1,2,4,3,4),ncol=2,byrow=TRUE))
vstep <- 4
title_pca <- "PCA (non-imputed data set)"
}
if(x@step=="Fillpeaks"){
layout(matrix(c(1,1,1,1,2,4,3,4),ncol=2,byrow=TRUE))
vstep <- 4
title_pca <- "PCA (imputed data set)"
}
### Barplot of the number of peaks found.
type <- match.arg(type)
###First plotting the number of peak detected by sample.
#tsample <- table(object@peaks[,"sample"])
swShiftCor <- 2*x@peaks[,"timeShifted"]+1*(x@peaks[,"corSampPeak"]<0.2)
vclasses <- sapply(swShiftCor,switchSummaryPeak)
if(type=="sample"){
vaggreg <- x@peaks[,"sample"]
}else{
vaggreg <- x@classes[x@peaks[,"sample"],2]
}
valHeight <- aggregate(vclasses,by=list(vaggreg),FUN=function(x){
tx <- table(x)
vres <- as.numeric(tx)
names(vres) <- names(tx)
vres
})
valHeight <- as.matrix(valHeight[,-1])
maxy <- apply(valHeight,1,sum)
if(type=="sample"){
rownames(valHeight) <- proFIA:::getRawName(x@classes[,1])
}else{
rownames(valHeight) <- unique(as.character(x@classes[,2]))
}
omar <- par("mar")
par(mar=c(4.1,2.6,3.1,0.1))
barVn <- barplot(t(valHeight),
## legend=colnames(valHeight),
names.arg = rep("", nrow(valHeight)),
col=c("red","blue","green4"),
## ylab="Number of peaks",
## main="Number of peaks",
## ylim=c(0,max(maxy)*1.25),
las = 3)
mtext(substr(rownames(valHeight), 1, 10), side = 1, at = barVn, las = 2, cex = 0.6)
mtext("Quality of feature flowgrams (in each sample)",
line = 1.7,
font = 2, col = "black", cex = 0.9)
mtext("Well behaved",
line = 0.2,
at = par("usr")[1] + 0.2 * diff(par("usr")[1:2]), col = "green4", cex = 0.8)
mtext("Shifted",
line = 0.2,
at = par("usr")[1] + 0.4 * diff(par("usr")[1:2]), col = "blue", cex = 0.8)
mtext("Significant Matrix Effect",
line = 0.2,
at = par("usr")[1] + 0.7 * diff(par("usr")[1:2]), col = "red", cex = 0.8)
par(mar=omar)
###the injection peaks are plotted.
plotSamplePeaks(x, diagPlotL = TRUE)
if(vstep<2) return(invisible(NA))
omar <- par("mar")
par(mar=c(3.1,2.6,2.1,1.1))
plot(density(x@group[,"mzMed"],bw=5),col="red",xlab="",
## ylab="Density of features",
main="Density of m/z features",lwd=2)
mtext("m/z", side = 1, line = 2, cex = 0.7)
par(mar = omar)
if(vstep<3) return(invisible(NA))
tempMatrix <- t(x@dataMatrix)
tempMatrix[which(is.na(tempMatrix))] <- 0
res_pca <- suppressMessages(opls(tempMatrix,plotL=FALSE,predI=2,log10L=TRUE,crossvalI=min(7,nrow(tempMatrix)-1)))
plot(res_pca,type="x-score",parAsColFcVn=x@classes[,2],parTitleL=FALSE,parDevNewL=FALSE)
title(title_pca, line = 2.5)
par(mar=vomar)
return(invisible(NA))
})
setGeneric("group.FIA", function(object, ...)
standardGeneric("group.FIA"))
#' Group the peaks of an FIA acquisition.
#'
#' Group the peaks in a FIA experiemnts by clustering under
#' an estimated density based on the accuracy in ppm
#' of the mass spectrometer.
#' @export
#'
#' @param object A proFIAset object.
#' @param ppmGroup A ppm parameter giving the size of the windows
#' considered, we recommend to use 0.5*ppm where ppm is the pp parameter
#' of band detection in the \code{\link{proFIAset}} function.
#' @param sleep If not 0 densities are plotted every \code{sleep} ms.
#' @param dmzGroup A minimum mz deviation value which can be considered over the deviation in ppm
#' if it is higher. This account for low mass deviation.
#' @param fracGroup The minimum fraction of samples of a class required to make
#' a group.
#' @param solvar Shall the group corresponding to solvent signal be kept. This in only useful if solvent
#' signal have been conserved in the \code{\link{findFIASignal}} function.
#' @return A proFIAset object with the \code{group} slot filled. See \code{\link{proFIAset-class}}.
#' @aliases group.FIA group.FIA,proFIAset-method
#' @examples
#' if(require("plasFIA")){
#' #proFIAset object is loaded
#' data(plasSet)
#'
#' #Parameters are defined.
#' ppm_group <- 1
#' dmz_group <- 0.0005
#' frac_group<-0.2
#'
#' plasSet<-group.FIA(plasSet,ppmGroup=ppm_group,fracGroup=frac_group,dmzGroup=dmz_group)
#' plasSet
#' }
setMethod("group.FIA", "proFIAset", function(object,
ppmGroup,
solvar = FALSE,
sleep = 0,
dmzGroup=0.0005,
fracGroup = 0.5) {
###CHecking that files have been peaks picked
if (nrow(object@peaks) == 0) {
stop("object does not contain any signals, impossible to group. See ?findFIAsignal")
}
tabP <- peaks(object)
porder <- order(tabP[, "mz"])
peaksL <- tabP[porder,]
col_val <- NULL
col_vec <- NULL
uclasses <- NULL
lty_vec <- NULL
lwd_vec <- NULL
nPoints <- 1024
mzrange <- range(peaksL[, "mz"])
#1500 is thet maximum mass of a metabolite. 1024 the number of points used in the density
inter <- mzrange[2] * ppmGroup * nPoints / (20 * 10 ^ 6)
message(
"A mass interval of ",
sprintf("%0.4f", inter),
"m/z will be used for the density estimation."
)
if (sleep > 0) {
uclasses <- unique(object@classes[, 2])
col_val <- rainbow(length(uclasses))
col_vec <- col_val[as.factor(object@classes[peaksL[, "sample"], 2])]
lty_vec <- rep(1, length(col_val))
lwd_vec <- rep(1, length(col_val))
}
mzrange <- c(floor(mzrange[1] / 50) * 50, ceiling(mzrange[2] / 50) * 50)
massInter <- seq(mzrange[1], mzrange[2], inter / 2)
masspos <- findEqualGreaterM(peaksL[, "mz"], massInter)
num_group <- 0
tabclasses <- table(as.character(object@classes[, 2]))
legList <- c(
"mzMed",
"mzMin",
"mzMax",
"sizeSamp",
"scanMin",
"scanMax",
"nPeaks",
"meanSolvent",
"timeShifted"
)
boolpval <- FALSE
NamesPeakList <- colnames(tabP)
boolpval <- ("signalOverSolventPvalue" %in% NamesPeakList)
if (boolpval) {
legList <- c(legList, "signalOverSolventPvalueMean")
}
boolcor = ("corSampPeak" %in% NamesPeakList)
if (boolcor) {
legList <- c(legList, "corSampPeakMean", "corSampPeakSd")
}
boolss = ("signalOverSolventRatio" %in% NamesPeakList)
if (boolss) {
legList <- c(legList, "signalOverSolventRatioMean")
}
groupmat <- matrix(nrow = 512, ncol = length(legList))
colnames(groupmat) <- legList
listgroup <- vector(mode = "list", 512)
maxPeaks <- max(tabP[, "sample"])
pos <- 0
previousMz <- NULL
imessage <- round(seq(1,(length(massInter) - 2),length=11))
for (i in seq(length = length(massInter) - 2)) {
if (i %in% imessage)
message(floor(i/length(massInter)*10)*10, " :", num_group," ",appendLF=FALSE)
mem <- i
start <- masspos[i]
end <- masspos[i + 2] - 1
if (end - start <= 0)
next
subpeakl <- peaksL[start:end,]
pos <- pos + 1
###Determining hte base of the signal to skip for a resolution.
bw <- max(5 * massInter[i] * ppmGroup / (10 ^ 6),dmzGroup)
if (bw > inter / 4) {
warning(
"Interval for grouping seems to short. Increase the inter parameter or modify the resolution parameter"
)
}
den <-
density(
subpeakl[, "mz"],
bw,
from = massInter[i] - bw,
to = massInter[i + 2] +
bw,
n = nPoints
)
###Putting the close to 0 to 0
maxy <- max(den$y)
den$y[which(den$y <= bw * maxy)] = 0
plim <- c(-1, 0, 0)
oldMz <- previousMz
previousMz <- NULL
GraphPeakBegin <- NULL
GraphPeakEnd <- NULL
###Peak are detected while density peaks remains in the selected interval.
repeat {
plim <- findLimDensity(den$y, plim[2] + 1, plim[3])
if (plim[1] == plim[2])
###In this case the last peak is found.
break
selectedPGroup <- which(subpeakl[, 3] >= den$x[plim[1]] &
subpeakl[, 3] <= den$x[plim[2]])
if (length(selectedPGroup) == 0) {
next
}
# if (any(is.na(selectedPGroup))) {
# next
# }
num_group <- num_group + 1
###Extending the maximal number of peaks if needed.
if (num_group > nrow(groupmat)) {
groupmat <-
rbind(groupmat, matrix(
nrow = nrow(groupmat),
ncol = ncol(groupmat)
))
listgroup <- c(listgroup, vector("list", length(listgroup)))
}
###Checking if the group have not been added during th previous group.
if (median(subpeakl[selectedPGroup, "mz"]) %in% oldMz ||
(abs(median(subpeakl[selectedPGroup, "mz"]) - massInter[i]) < bw) ||
(abs(median(subpeakl[selectedPGroup, "mz"]) - massInter[i + 2]) <
bw)) {
num_group <- num_group - 1
next
}
###Checking the fraction of sampl found in the signal.
posSample <- NULL
if (solvar) {
posSample <- selectedPGroup
} else{
###Retaining the position of the peak on which sample have been detected.
posSample <- selectedPGroup[which(subpeakl[selectedPGroup, "scanMin"] !=
1)]
}
###CHecking that sample is detected in a high enough fraction of a class.
vecLab <- object@classes[subpeakl[posSample, "sample"], 2]
namesGroup <- names(tabclasses)
found <- FALSE
for (i in 1:length(namesGroup)) {
numElem <- length(which(vecLab == namesGroup[i]))
if (numElem >= fracGroup * tabclasses[i]) {
found <- TRUE
#groupmat[num_group, "class"] <- i
break
}
}
###If the peak is not reproductible, pass.
if (!found) {
num_group <- num_group - 1
next
}
# legList = c(
# "mzmed", "mzmin", "mzmax", "sizesamp", "scanmin", "scanmax","npeaks","solvent"
# )
groupmat[num_group, "scanMin"] <-
min(subpeakl[posSample, "scanMin"])
groupmat[num_group, "scanMax"] <-
max(subpeakl[posSample, "scanMax"])
groupmat[num_group, "sizeSamp"] <-
median(subpeakl[posSample, "scanMax"] - subpeakl[posSample, "scanMin"])
groupmat[num_group, "mzMed"] <-
median(subpeakl[selectedPGroup, "mz"])
##mz is stocked.
previousMz <- c(previousMz, groupmat[num_group, 1])
groupmat[num_group, c("mzMin", "mzMax")] <-
range(c(subpeakl[selectedPGroup, "mzmin"], subpeakl[selectedPGroup, "mzmax"]))
groupmat[num_group, "nPeaks"] <- length(posSample)
groupmat[num_group, "timeShifted"] <- ifelse(sum(subpeakl[selectedPGroup, "timeShifted"])==0,0,1)
groupmat[num_group, "meanSolvent"] <-
mean(subpeakl[posSample, "solventIntensity"])
if (boolpval) {
groupmat[num_group, "signalOverSolventPvalueMean"] = median(subpeakl[posSample, "signalOverSolventPvalue"])
}
if (boolcor) {
groupmat[num_group, "corSampPeakMean"] = mean(subpeakl[posSample, "corSampPeak"])
groupmat[num_group, "corSampPeakSd"] = sd(subpeakl[posSample, "corSampPeak"])
}
if (boolss) {
groupmat[num_group, "signalOverSolventRatioMean"] = mean(subpeakl[posSample,"signalOverSolventRatio"])
}
listgroup[[num_group]] <-
sort(porder[(start:end)[posSample]])
###Adding the detected group to the current list.
GraphPeakBegin <- c(GraphPeakBegin, plim[1])
GraphPeakEnd <- c(GraphPeakEnd, plim[2])
}
oldMz <- previousMz
if (sleep > 0 & !is.null(GraphPeakBegin)) {
maxden <- max(den$y)
maxint <- max(subpeakl[, "maxIntensity"])
plot(den, main = paste(
round(min(subpeakl[, 3]), 4),
"-",
round(max(subpeakl[, 3]), 4),
" groups : ",
length(GraphPeakBegin)
))
for (gi in 1:length(GraphPeakBegin)) {
lines(den$x[(GraphPeakBegin[gi]):(GraphPeakEnd[gi])],
den$y[(GraphPeakBegin[gi]):(GraphPeakEnd[gi])],
col =
630,
lwd = 1.5)
abline(v = den$x[c(GraphPeakBegin[gi], GraphPeakEnd[gi])], col =
"darkgrey")
}
points(subpeakl[, "mz"],
subpeakl[, "maxIntensity"] * maxden / maxint,
col =
col_vec[start:end],
pch = 19)
points(subpeakl[, "mz"],
subpeakl[, "maxIntensity"] * maxden / maxint,
col =
col_vec[start:end],
type = "h")
###Adding the solvent lvl.
legend(
"topright",
c(as.character(uclasses), "peaks detected"),
col = c(col_val, 630),
lty =
c(lty_vec, 1),
lwd = c(lwd_vec, 1.5)
)
Sys.sleep(sleep)
}
}
#colnames(groupmat)<-c("mz","mzmin","mzmax","size","scan_min","scan_max","num_peaks","label")
groupmat <- groupmat[1:num_group,]
cat("\n", nrow(groupmat), " groups have been done .\n")
object@group <- groupmat
object@groupidx <- listgroup[1:num_group]
object@step <- "Samples_grouped"
object
})
getRawName <- function(filenames) {
inte <- basename(filenames)
fl <- strsplit(inte, split = ".", fixed = TRUE)
return(unlist(lapply(fl, function(x) {
x[1]
})))
}
getUniqueIds <- function(ids){
tid <- table(ids)
pmul <- which(tid>1)
lab <- names(tid)
if(length(pmul)>0){
for(i in 1:length(pmul)){
posok <- which(ids == lab[pmul[i]])
labvec <- paste(ids[posok],c('',paste('_',2:(tid[pmul[i]]),sep="")),sep = "")
ids[posok] <- labvec
}
}
ids
}
setGeneric("makeDataMatrix", function(object, ...)
standardGeneric("makeDataMatrix"))
#' Construct the data matrix of a proFIAset object.
#'
#' Construct the data matrix of a proFIA set object, using the selected measure for the intensity,
#' area or maximum intensity. The choice of area or maximum intensity depends of your acquisition,
#' and your preferences.
#' @export
#' @param object A \code{\link{proFIAset}} object.
#' @param maxo Shall the intensity used to the area or the maximum
#' intensity
#' @aliases makeDataMatrix makeDataMatrix,proFIAset-method
#' @return A proFIAset object with the \code{dataMatrix} slot filled.
#' @seealso To obtain this data matrix see \code{\link{proFIAset}}.
#' @examples
#' if(require("plasFIA")){
#' #proFIAset object is loaded
#' data(plasSet)
#'
#' plasSet<-makeDataMatrix(plasSet)
#' plasSet
#' }
setMethod("makeDataMatrix", "proFIAset", function(object, maxo = FALSE) {
if(!(object@step %in%c("Samples_grouped","Matrix_created","Fillpeaks"))){
stop("Peaks needs to be grouped before creating the data Matrix, see ?group.FIA.")
}
unSample <- unique(peaks(object)[, "sample"])
matResult <- matrix(NA_real_,
ncol = max(unSample),
nrow = nrow(object@group))
for (i in 1:nrow(object@group)) {
if (maxo) {
matResult[i, object@peaks[object@groupidx[[i]], "sample"]] = object@peaks[object@groupidx[[i]], "maxIntensity"]
} else{
matResult[i, object@peaks[object@groupidx[[i]], "sample"]] = object@peaks[object@groupidx[[i]], "areaIntensity"]
}
}
matResult <- matResult[, which(1:max(unSample) %in% unSample)]
colnames(matResult) <- getUniqueIds(getRawName(object@classes[, 1]))
rownames(matResult) <-
getUniqueIds(paste("M", sprintf("%0.4f", object@group[, 1]), sep = ""))
object@dataMatrix <- matResult
object@step <- "Matrix_created"
object
})
makeSeparateColors <-
function(rclasses,
sizeSample = 2,
sizeBlank = 2) {
classes <- as.numeric(rclasses)
tC <- table(classes)
numClasses <- length(tC)
inter <- seq(0, 1, length = ((sizeSample + sizeBlank) * numClasses))
#cat(inter)
vec_col <- rep(0, length(classes))
for (i in 1:numClasses) {
vec_col[which(classes == i)] = rainbow(tC[i], start = inter[(i - 1) * (sizeBlank +
sizeSample) + 1], end = inter[i * (sizeBlank + sizeSample) - sizeBlank])
}
vec_col
}
makeSpaces <- function(rclasses,
sizeSample = 1,
sizeBlank = 4) {
classes <- as.numeric(rclasses)
tC <- table(classes)
numClasses <- length(tC)
tC <- c(0, cumsum(tC))
#cat(inter)
vec_space <- rep(0, length = (sizeSample * length(classes)))
for (i in 1:(numClasses)) {
vec_space[(tC[i] + 1):tC[i + 1]] <- (tC[i] + 1):tC[i + 1] + (i - 1) * sizeBlank
}
vec_space
}
setGeneric("findMzGroup", function(object, ...)
standardGeneric("findMzGroup"))
#' find a group in a FIA experiment.
#'
#' Find a group corresponding to the given mass in a proFIAset
#' object, given a tolerance in ppm.The mz considered for a group
#' is the median fo the grouped signals between the various acquisition.
#' @export
#' @param object A proFIAset object.
#' @param mz A numeric vector of masses to be looked for.
#' @param tol The tolerance in ppm.
#' @param dmz The minimum tolerance in absolute mz compared to the tolerance in ppm.
#' @param closest Shall only the closest group be returned.
#' @return A vector of integer of the same length than mz giving the row
#' of the found group in the object group slot, or NA if the group is
#' not found.
#' @aliases findMzGroup findMzGroup,proFIAset-method
#' @return If closest is FALSE a list giving the index of the found group, if closest is TRUE a vector
#' giving the position. NA indicates that the mass signal have not bene found.
#' @seealso You can visualize the group using \code{\link{plotFlowgrams}} function.
#' @examples
#' if(require("plasFIA")){
#' #proFIAset object is loaded
#' data(plasSet)
#'
#' #The table of spiked molecule is loaded
#' data(plasMols)
#'
#' #Mass to search and toolerance are defined
#' mass<-plasMols[22,"mass_M+H"]
#' tolppm <- 1
#'
#' plasSet<- makeDataMatrix(plasSet)
#'
#' index <- findMzGroup(plasSet,mass,tol=tolppm)
#'
#' plasMols[22,]
#' #We extract the corresponding group.
#' groupMatrix(plasSet)[index,]
#' }
setMethod("findMzGroup", "proFIAset", function(object, mz, tol,dmz = 0.005, closest = TRUE) {
if(nrow(object@group)==0) stop("group needs to be created before using findMzGroup. See ?group.FIA.")
vecRes <- vector(mode="list",length=length(mz))
vectol <- tol*1e-6*object@group[,"mzMed"]
vectol <- ifelse(vectol < dmz, dmz, vectol)
bmin <- object@group[,"mzMed"]-vectol
bmax <- object@group[,"mzMed"]+vectol
for (i in 1:length(vecRes)) {
pos <- which(bmin <= mz[i] &
bmax >= mz[i])
if (length(pos) > 1 & closest) {
best <- which.min(abs(object@group[pos, "mzMed"] - mz[i]) / mz[i])
pos <- pos[best]
}
##Checking if the found group got his med mz close to the peak.
if (length(pos) == 0 | is.null(pos)) pos <- NA
vecRes[[i]] <- pos
}
if(closest) vecRes <- unlist(vecRes)
vecRes
})
setGeneric("impute.KNN_TN", function(object, ...)
standardGeneric("impute.KNN_TN"))
#' Fill missing values in the peak table using K-nearest Neighbour for tuncated distributions.
#'
#' Impute the missing values in an FIA experiment using a Weighted
#' K-Nearest Neighbours on Truncated Distribution described by Jasmit S. Shah et al.
#' @export
#' @param object A proFIAset object.
#' @param k The number of neighbors considered, can be a fraction then in this case the
#' k will be taken for each class as the frac of the effective of the class. 3 at minima because comparison
#' is based on correlation.
#' @param classes how to handle imputation for different classes, if 'split', the classes
#' are taken separately, if 'unique', the imputation is done on the full data matrix.
#' @return A proFIAset object with the missing values imputated.
#' @aliases impute.KNN_TN impute.KNN_TN,proFIAset-method
#' @references Distribution based nearest neighbor imputation for truncated high dimensional data with applications to pre-clinical and
#'clinical metabolomics studies, J.S Shah 2017, BMC Bioinformatics.
#' @examples
#' if(require(plasFIA)){
#' data(plasSet)
#'
#' ###Reinitializing the data matrix
#' plasSet<-makeDataMatrix(plasSet,maxo=FALSE)
#' plasSet<-impute.KNN_TN(plasSet,2)
#' }
###We let the k being adaptative.
setMethod("impute.KNN_TN","proFIAset",function(object,k=0.6,classes=c("split","unique")){
classes <- match.arg(classes)
if(k!=round(k)){
###
if(k>1) stop("k shloud be an integer greater than 2 or a float inferior to 1.")
rta <- table(object@classes[,1])
prta <- which((as.numeric(rta)*k)<2)
if(length(prta)!=0){
stop(paste("The class(es)",names(rta)[prta],"got a too low number of samples to use with parameter",k))
}
}
dm <- dataMatrix(object)
dm[which(dm==0,arr.ind = TRUE)] <- NA
dm <- log10(dm)
allClasses <- unique(as.character(object@classes[,2]))
b_imputation <- rep(TRUE,nrow(dm))
resMatrix <- dm
if(classes=="split" & length(allClasses)>1){
####The matrix is splitted given the list sumbsample
for(i in allClasses){
psample <- which(as.character(object@classes[,2])==i)
if(length(psample)<k) warnings(paste(
"Using missing values imputation using",k,"while the class",i,"contains only",length(psample),"samples.\n"
))
###
i_k <- ifelse(k==round(k),k,ceiling(k*length(psample)))
temp_res <- imputeKNN(dm[,psample,drop=FALSE],k = i_k,distance="truncation")
resMatrix[,psample] <- temp_res$imputedData
cat(length(b_imputation),"vs",length(temp_res$problems))
b_imputation <- b_imputation&temp_res$problems
}
}else{
psample <- 1:ncol(dm)
i_k <- ifelse(k==round(k),k,ceiling(k*length(psample)))
temp_res <- imputeKNN(dm[,psample,drop=FALSE],k = i_k,distance="truncation")
resMatrix[,psample] <- temp_res$imputedData
b_imputation <- b_imputation&temp_res$problems
}
object@dataMatrix <- 10^resMatrix
cnames <- colnames(object@group)
object@group <- cbind(object@group,as.numeric(b_imputation))
colnames(object@group) <- c(cnames,"imputationOk")
return(object)
})
setGeneric("impute.randomForest", function(object, ...)
standardGeneric("impute.randomForest"))
#' Fill missing values in the peak table using random forest.
#'
#' Impute the missing values in an FIA experiment using a random forest implemented
#' in the missForest package.
#' @export
#' @param object A proFIAset object.
#' @param parallel Shall parallelism be used.
#' @param ... supplementary arguements to be passed to missForest function.
#' @return A proFIAset object with the missing values imputated.
#' @aliases impute.randomForest impute.randomForest,proFIAset-method
#' @references Stekhoven, D.J. and Buehlmann, P. (2012), 'MissForest - nonparametric missing value imputation for mixed-type data',
#' Bioinformatics, 28(1) 2012, 112-118, doi: 10.1093/bioinformatics/btr597
#' @examples
#' if(require(plasFIA)){
#' data(plasSet)
#' ###Reinitializing the data matrix
#' plasSet<-makeDataMatrix(plasSet,maxo=FALSE)
#' plasSet<-impute.randomForest(plasSet)
#' }
setMethod("impute.randomForest","proFIAset",function(object,parallel=FALSE,...){
dm <- dataMatrix(object)
if(! parallel){
parallel <- "no"
}else{
parallel <- "variables"
}
dm <- missForest(dm,parallelize=parallel,...)$ximp
object@dataMatrix <- dm
return(object)
})
setGeneric("impute.FIA", function(object, ...)
standardGeneric("impute.FIA"))
#' Fill missing values using the provided method.
#'
#' Impute the missing values in an FIA experiment using a Weighted
#' K-Nearest Neighbours on Truncated Distribution implemented in \code{\link{impute.KNN_TN}} or by random forest using the \code{\link{impute.randomForest}} function.
#' @export
#' @param object A proFIAset object.
#' @param method The method to be used for missing value imputation.
#' @param ... Arguments furnished to the imputation method. No argument is required for \code{\link{impute.randomForest}} and the number of neighbours should be furnished using the \code{\link{impute.KNN_TN}} function.
#' @aliases impute.FIA impute.FIA,proFIAset-method
#' @examples
#' if(require(plasFIA)){
#' data(plasSet)
#'
#' ###Reinitializing the data matrix an using KNN
#' plasSet<-makeDataMatrix(plasSet,maxo=FALSE)
#' plasSet<-impute.FIA(plasSet,method="KNN_TN",k=2)
#'
#' ###Reinitializing the data matrix and using randomForest
#' plasSet<-makeDataMatrix(plasSet,maxo=FALSE)
#' plasSet<-impute.FIA(plasSet,method="randomForest")
#' }
###We let the k being adaptative.
setMethod("impute.FIA","proFIAset",function(object,method=c("KNN_TN","randomForest"),...){
if(object@step=="Fillpeaks") stop("Missing value have already been imputed, redo it, use makeDataMatrix then
impute missing values.")
method <- match.arg(method)
if(method=="KNN_TN"){
object <- impute.KNN_TN(object,...)
}else if(method == "randomForest"){
object <- impute.randomForest(object,...)
}
object@step <- "Fillpeaks"
return(object)
})
setGeneric("peaksGroup", function(object, ...)
standardGeneric("peaksGroup"))
#' Return the peaks corresponding to a group.
#'
#' Return the peaks corresponding ot a group given by his index.
#' @export
#' @param object A proFIAset object.
#' @param index A numeric vector r giving the group to be returned. NA are ignored.
#' @return The peaks in the given group, see \code{\link{proFIAset-class}}.
#' @aliases peaksGroup peaksGroup,proFIAset-method
#' @examples
#' if(require(plasFIA)){
#' data(plasSet)
#' data(plasMols)
#'
#' #finding the molecules of plasMols
#' vmatch<-findMzGroup(plasSet,mz=plasMols[,"mass_M+H"],tol=5)
#'
#' mol_peaks<-peaksGroup(plasSet,index=vmatch)
#' head(mol_peaks)
#' }
setMethod("peaksGroup", "proFIAset", function(object,
index = NULL) {
if (!is.numeric(index))
stop("Index need to be an integer or a vector of numeric.")
posna <- which(is.na(index))
if(length(posna)!=0){
index <- index[-posna]
}
if (length(index)==0)
stop("Index is of size 0, or only NA are provided.")
matGroup <- object@peaks[unlist(object@groupidx[index]),,drop=FALSE]
return(matGroup)
})
colorKeys <- function(i) {
if (i == 0)
return("white")
switch(EXPR = i,
"red",
"green3",
"blue",
"cyan",
"orange",
"black")
}
layoutMatrix <- function(n) {
if (n == 1) {
return(matrix(c(1)))
}
if (n == 2) {
return(matrix(c(1, 2), nrow = (2)))
}
if (n == 3) {
return(matrix(c(1, 2, 3), nrow = (3)))
}
if (n == 4) {
return(matrix(c(1, 2, 3, 4), nrow = (2), byrow = TRUE))
}
if (n == 5) {
return(matrix(c(1, 2, 3, 4, 5, 6), nrow = (2), byrow = TRUE))
}
if (n == 6) {
return(matrix(c(1, 2, 3, 4, 5, 6), nrow = (2), byrow = TRUE))
}
if (n == 7) {
return(matrix(
c(1, 2, 3, 4, 5, 6, 7, 8, 9),
nrow = (3),
byrow = TRUE
))
}
if (n == 8) {
return(matrix(
c(1, 2, 3, 4, 5, 6, 7, 8),
nrow = (2),
byrow = TRUE
))
}
if (n == 9) {
return(matrix(
c(1, 2, 3, 4, 5, 6, 7, 8, 9),
nrow = (3),
byrow = TRUE
))
}
if (n == 10) {
return(matrix(
c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12),
nrow = (4),
byrow = TRUE
))
}
if (n == 11) {
return(matrix(
c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12),
nrow = (4),
byrow = TRUE
))
}
if (n == 12) {
return(matrix(
c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12),
nrow = (4),
byrow = TRUE
))
}
}
toVoid <- function(n) {
if (n == 5)
return(5)
if (n == 7)
return(c(6, 8))
if (n == 10)
return(c(10, 12))
if (n == 11)
return(c(12))
return(0)
}
setGeneric("exportVariableMetadata", function(object, ...)
standardGeneric("exportVariableMetadata"))
#' Export variable metadata.
#'
#' Export the variable metadata of an experiment, to
#' be used for statistical analysis.
#'
#' @export
#' @param object A proFIAset object.
#' @param filename If not NULL the result will be written
#' in filename
#' @return A dataframe with the following columns :
#' \itemize{
#' \item variableID an ID similar to the one of the peak table.
#' \item mzMed the median value of group in the m/z dimension.
#' \item mzMin the minimum value of the group in the m/z dimension.
#' \item mzMax the maximum value of the group in the m/z dimension.
#' \item scanMin the first scan on which the signal is detected.
#' \item scanMax the last scan on which the signal is detected.
#' \item nPeaks The number of peaks grouped in a group.
#' \item meanSolvent The mean of solvent in the acquisition.
#' \item signalOverSolventPvalue The mean p-value of the group.
#' \item corMean The mean of the matrix effect indicator.
#' \item SigSolMean The mean of ratio of the signal max
#' intensity on the solvent max intensity.
#' }
#' @aliases exportVariableMetadata exportVariableMetadata,proFIAset-method
#' @examples
#' if(require(plasFIA)){
#' data(plasSet)
#' vtab<-exportVariableMetadata(plasSet)
#' head(vtab)
#' }
setMethod("exportVariableMetadata", "proFIAset", function(object, filename =
NULL) {
toExport = data.frame(object@group, stringsAsFactors = FALSE)
toExport["variableID"] = getUniqueIds(row.names(object@dataMatrix))
if (!is.null(filename)) {
write.table(
toExport,
file = filename,
row.names = FALSE,
col.names = TRUE,
sep = "\t"
)
}
return(invisible(toExport))
})
setGeneric("exportSampleMetadata", function(object, ...)
standardGeneric("exportSampleMetadata"))
#' Export samples metadata.
#'
#' Export the samples metadata of an experiment, to
#' be used for statistical analysis.
#'
#' @export
#' @param object A proFIAset object.
#' @param filename If not NULL the result will be written
#' in filename
#' @return A dataframe with the following columns :
#' \itemize{
#' \item sampleID an ID similar to the one of the peak table.
#' \item class the group of the sample.
#' }
#' @aliases exportSampleMetadata exportSampleMetadata,proFIAset-method
#' @examples
#' if(require(plasFIA)){
#' data(plasSet)
#' tsample<-exportSampleMetadata(plasSet)
#' head(tsample)
#' }
setMethod("exportSampleMetadata", "proFIAset", function(object, filename =
NULL) {
if(nrow(object@dataMatrix)==0){
stop("dataMatrix needs to be created before exporting sampleMetadata.")
}
toExport <- data.frame(
sampleID = colnames(object@dataMatrix),
class = as.character(object@classes[, 2]),
stringsAsFactors =
FALSE
)
if (!is.null(filename)) {
write.table(
toExport,
file = filename,
row.names = FALSE,
col.names = TRUE,
sep = "\t"
)
}
return(invisible(toExport))
})
setGeneric("plotFlowgrams", function(object, ...)
standardGeneric("plotFlowgrams"))
#' Plot raw temporal profiles of the selected group.
#'
#' Plot raw temporal profiles from \code{\link{proFIAset}} object
#' corresponding to one or more molecules. The function will priorize
#' index, only using mz if index is set to \code{NULL}. As this require to come
#' back to the raw data, this can take some times, an we don't recommend using it
#' on more than 30 files. It is better to choose 30 files in the proFIAset object.
#'
#' @export
#' @param object A proFIAset object.
#' @param index The index of the group to be plotted.
#' @param mz An mz value to be looked for only used if index is null.
#' the research use the \code{\link{findMzGroup}} function.
#' @param subsample A subset of sample to be plotted.
#' @param ppm The tolerance for the research if mz is provided.
#' @param margin An area outer the EICs mz range on which the EIC may be extended.
#' @param posleg The position of the legend on the figure. See \code{\link[graphics]{legend}}.
#' @param title An optional vector of title for the plot. Need to be of the same
#' @param scaled Shall all the EIC be put on the same scale with maximum to 1.
#' @param area Shall the detectged area be plotted using transparency.
#' @param ... Supplementary graphical parameters to be passed to lines.
#' length than index.
#' @aliases plotFlowgrams plotFlowgrams,proFIAset-method
#' @return No returned value
#' @examples
#' if(require(plasFIA)){
#' data(plasMols)
#' data(plasSet)
#' plotFlowgrams(plasSet,mz=plasMols[7,"mass_M+H"])
#' }
setMethod("plotFlowgrams", "proFIAset", function(object,
index = NULL,
mz = NULL,
subsample = NULL,
ppm = 5,
margin = 0.0002,
posleg=c("topright","bottomright", "bottom",
"bottomleft", "left", "topleft",
"top", "right", "center"),title=NULL,
scaled=FALSE,area=FALSE,...) {
posleg <- match.arg(posleg)
if(!(object@step %in% c("Samples_grouped","Matrix_created","Fillpeaks"))){
stop("Peaks needs to be grouped before plotting the EICs, see ?group.FIA.")
}
if (is.null(index)) {
if (is.null(mz))
stop("Index or mz need to be provided")
index <- sapply(mz, findMzGroup, object = object, tol = ppm)
}
if(!is.null(title)){
if(length(title)!=length(index)){
stop("Title and index needs to have the same length, they are respectively ",
length(title)," and ",length(index),"\n")
}
}
tclasses <- object@classes
matpres <- matrix(0,
nrow = length(index),
ncol = nrow(object@classes))
matmz <- matrix(0, nrow = length(index), ncol = 3)
for (i in 1:length(index)) {
matpres[i, object@peaks[object@groupidx[[index[i]]],,drop=FALSE][, "sample"]] = 1
matmz[i,] = object@group[index[i], c("mzMin", "mzMax", "mzMed")]
}
if (!is.null(subsample)) {
matpres <- matpres[, subsample, drop = FALSE]
} else{
subsample <- 1:nrow(object@classes)
}
# print(matmz)
# print(matpres)
vall <- sapply(1:length(subsample), function(x, samplev, matpres, matmz, margin) {
xraw <- xcmsRaw(samplev[x])
rEIC <- list()
for (j in 1:nrow(matmz))
{
if (matpres[j, x] == 0)
{
rEIC[[j]] <- NA
} else{
mzrange <- c(matmz[j, c(1, 2), drop = FALSE])
rEIC[[j]] <- rawEIC(xraw, mzrange = c(mzrange[1], mzrange[2]))$intensity
if(scaled) rEIC[[j]] <- rEIC[[j]]/max(rEIC[[j]])
# print(sum(rEIC[[j]]))
}
}
rEIC$scantime <- xraw@scantime
rEIC
}, samplev = object@classes[subsample, 1], matpres = matpres, matmz = matmz, simplify =
FALSE, margin = margin)
#return(vall)
###Now we have a list of list[[list[[]]]] with expriment[acquisition]
colvec <- NULL
colleg <- NULL
ileg <- NULL
if (length(unique(object@classes[subsample, 2])) == 1) {
colvec <- rainbow(length(subsample))
colleg <- rainbow(length(subsample))
} else{
colvec <- makeSeparateColors(object@classes[, 2])[subsample]
colleg <- unique(object@classes[subsample, 2])
ileg <- match(unique(object@classes[subsample, 2]),object@classes[subsample, 2])
ileg <- floor((ileg+c((ileg[-1]-1),length(subsample)))/2)
}
###Now we create the area color if necessary
colarea <- NULL
if(area){
colarea <- col2rgb(colvec)
colarea <- apply(colarea,2,function(x){
rgb(x[1],x[2],x[3],80,maxColorValue = 255)
})
}
maxx <- max(unlist(sapply(vall, function(x) {
x$scantime
})))
for (i in 1:length(index)) {
pok <- which(matpres[i,] != 0)
if (length(pok) == 0)
next
###Getting the max
vecval <- lapply(vall, "[[", i)
maxy <- max(unlist(vecval[pok]))
mtitle <- NULL
if(is.null(title)){
mtitle <- paste("Group :", index[i], sprintf("%0.4f", matmz[i, 3]), "m/z")
}else{
mtitle <- title[i]
}
plot(
NULL,
xlab = "Time (s)",
ylab = "Intensity",
main = mtitle,
xlim = c(0, maxx),
ylim = c(0, maxy)
)
for (j in 1:length(pok)) {
lines(vall[[pok[j]]]$scantime, vall[[pok[j]]][[i]], col = colvec[pok[j]])
if(area){
sx <- c(vall[[pok[j]]]$scantime,rev(vall[[pok[j]]]$scantime))
sy <- c(vall[[pok[j]]][[i]],rep(0,length(vall[[pok[j]]][[i]])))
polygon(sx,sy,col=colarea[pok[j]])
}
}
###Adding the legend.
if (length(unique(object@classes[subsample, 2])) == 1) {
legend(posleg,as.character(proFIA:::getRawName(object@classes[subsample, 1]))[pok],lty=rep(1,length(subsample))[pok],col=colvec[pok])
} else{
legend(posleg,as.character(unique(object@classes[subsample, 2])),lty=rep(1,length(unique(object@classes[subsample, 2]))),col =
colvec[ileg])
}
}
})
setGeneric("plotSamplePeaks", function(object, ...)
standardGeneric("plotSamplePeaks"))
#' Plot the sample peak of a proFIAset object.
#'
#' Plot the sample peaks determined by regression for each sample.
#' If you want to check the various regression performed by
#' \emph{proFIA} in an individual sample we recommend you to use the
#' \code{\link{getInjectionPeak}}. A sample peak highly different form the
#' other may indicate a problem of the regression process, or an injection issue
#' in the acquisition.
#'
#' @export
#' @param object A proFIAset object.
#' @param subsample The subset of sample on which the sample may be plotted.
#' If it is numeric it will be viewed as sample row in the classes table,
#' if it is a character it will be viewed as a factor.
#' @param diagPlotL Boolean used by the usmmary plot function. Keep to FALSE in the general case.
#' @param ... SUpplementary arguments which will be passed to the \link{lines}
#' function.
#' @aliases plotSamplePeaks plotSamplePeaks,proFIAset-method
#' @return No value returned.
#' @examples
#' if(require(plasFIA)){
#' data(plasSet)
#' plotSamplePeaks(plasSet)
#' }
setMethod("plotSamplePeaks", "proFIAset", function(object, subsample = NULL, diagPlotL = FALSE, ...) {
if (is.null(subsample)) {
subsample <- 1:nrow(object@classes)
} else if (is.character(subsample)) {
message("subsample is a character trying to match it as a factor.")
subsample <- which(object@classes[, 2] %in% subsample)
if (length(subsample) == 0)
stop(
"Wrong subsample provided, subsample shall be a number
or a class of the proFIAset object."
)
} else if (is.numeric(subsample)) {
if (any(subsample > nrow(object@classes)))
stop("Subsample shall be less than the number of sample.")
}
toPlot <- object@injectionPeaks[subsample]
vbeginning <- object@injectionScan[subsample]
vl <- sapply(toPlot, length)
rangex <- c(0, max(vbeginning + vl - 1))
colvec <- makeSeparateColors(object@classes[subsample, 2])
vleg <- table(object@classes[subsample, 2])
## mtitle <- "Sample Injection Peaks"
mtitle <- "Sample peak models"
vcol <- NULL
if (length(vleg) == 1) {
## mtitle <- paste(mtitle, "class", object@classes[subsample[1], 2])
} else{
vleg <- cumsum(as.numeric(vleg))
print(vleg)
vcol <- colvec[vleg]
vleg <- object@classes[subsample[vleg], 2]
}
if(diagPlotL) {
omar <- par("mar")
par(mar=c(2.6,2.6,2.1,1.1))
plot(
1:2,
xlab = "",
ylab = "Injection Peak",
main = mtitle,
xlim = rangex,
ylim = c(0, 1),
type="n"
)
mtext("Time (s)", side = 1, line = 2.5, cex = 0.7)
}else{
###To be usre to get the good plot.
plot(
1:2,
xlab = "Scan number",
ylab = "Injection Peak",
main = mtitle,
xlim = rangex,
ylim = c(0, 1),
type="n"
)
}
if(diagPlotL) {
par(mar = omar)
}
## mtext(mtitle, line = 1, cex = 0.8)
for (i in 1:length(subsample)) {
lines((vbeginning[i]):(vbeginning[i] + vl[i] - 1),
toPlot[[i]],
col = colvec[i],
...)
}
if (length(vleg) != 1) {
legend("topright",
as.character(vleg),
col = vcol,
lty = 1)
}
return(invisible(object@dataMatrix))
})
setGeneric("exportDataMatrix", function(object, ...)
standardGeneric("exportDataMatrix"))
#' Export data matrix.
#'
#' Export the data matrix from a \code{\link{proFIAset}} object, to
#' be used for statistical analysis.
#'
#' @export
#' @param object A proFIAset object.
#' @param filename If not NULL the result will be written
#' in filename as a tabular separated values file.
#' @return A matrix with dimension samples x variables.
#' @aliases exportDataMatrix exportDataMatrix,proFIAset-method
#' @examples
#' if(require(plasFIA)){
#' data(plasSet)
#' dm<-exportDataMatrix(plasSet)
#' head(dm)
#' }
setMethod("exportDataMatrix", "proFIAset", function(object, filename = NULL) {
if (!is.null(filename)) {
write.table(
object@dataMatrix,
file = filename,
row.names = TRUE,
col.names = TRUE,
sep =
"\t"
)
}
return(invisible(object@dataMatrix))
})
#' Wrapper function for the full FIA analysis workflow.
#'
#' Perform the 4 steps pro fia workflow including :
#' \itemize{
#' \item noise estimation. Noise is estimated.
#' \item bands filtering. Bands are filtered using the \code{\link{findFIASignal}} function.
#' \item peak grouping. Signals from different acquisition are grouped using \code{\link{group.FIA}} function.
#' \item missing values imputations. Missing values are imputated using \code{\link{impute.KNN_TN}} function.
#' }
#' Minimal options to launch the workflow are provided, neithertheless if finer option tuning are
#' necessary, launching the workflow function by function is strongly advised.
#' @export
#' @param path The path to the directory of acquistion.
#' @param ppm The tolerance for deviations in m/z between scan in ppm \code{\link{findFIASignal}}
#' @param dmz The minimum tolerance for deviations in m/z between scan in Dalton \code{\link{findFIASignal}}
#' @param fracGroup The fraction of smaple form a class necessary to make a group.
#' @param ppmGroup A ppm tolerance to group signals between samples \code{\link{group.FIA}}.
#' @param dmzGroup The minimum tolerance in Dalton to group signals between samples \code{\link{group.FIA}}.
#' @param parallel A boolean indicating if parallelism is supposed to be used.
#' @param bpparam A BiocParallelParam object to be passed i BiocParallel is used.
#' @param noiseEstimation A boolean indicating in noise need to be estimated.
#' @param maxo Should the maximum intensity be used over the peak area.
#' @param SNT A value giving the SNT thrshold, used only if \code{noiseEstimation} is FALSE.
#' @param imputation The method to use for imputation 'randomForest' (\code{\link{impute.randomForest}}) or 'KNN_TN' (\code{\link{impute.KNN_TN}}). Put 'None' if no imputation should be done.
#' @param ... Supplementary arguments to be passed to the imputation method, see \code{\link{impute.FIA}} for detail.
#' @return A filled proFIAset object ready for exportation.
#' @aliases analyzeAcquisitionFIA
#' @examples
#' if(require(plasFIA)){
#' path<-system.file(package="plasFIA","mzML")
#'
#' #Defining parameters for Orbitrap fusion.
#' ppm<-2
#' dmz <- 0.0005
#' ppm_group<-1
#' dmz_group <- 0.0003
#' paral<-FALSE
#' frac_group<-0.2
#' k<-2
#' maxo<-FALSE
#' vimputation <- "randomForest"
#' \dontrun{plasSet<-analyzeAcquisitionFIA(path,ppm=ppm,dmz=dmz,imputation=vimputation,fracGroup=frac_group,ppmGroup=ppm_group,dmzGroup=dmz_group,k=k,maxo=maxo,parallel=paral)}
#' }
analyzeAcquisitionFIA <-
function(path,
ppm,
dmz = 0.001,
fracGroup = 0.5,
ppmGroup = NULL,
dmzGroup = 0.0005,
parallel = FALSE,
bpparam = NULL,
noiseEstimation = TRUE,
SNT = NULL,
maxo = FALSE,
imputation = c("KNN_TN","randomForest","None"),
...) {
if (!dir.exists(path)) {
stop(
"The specified must be a valid directory leading to an FIA experiment. Use findSignal
if you wants to process in a single file."
)
}
imputation <- match.arg(imputation)
if (ppm > 20) {
warning(
"proFIA have been designed for very high resolution data, choose a lower ppm
value."
)
}
####Checking if noise is supposed ot be used.
if (!noiseEstimation) {
if (is.null(SNT)) {
stop(
"No noise estimation and no SNT, peaks can't be filtered, please furnish one of the two."
)
} else{
message("No noise estimation pure SNT threshold will be used.")
maxo <- TRUE
}
} else{
message("Noise estimation will be used.")
}
message("Step 1 : Noise Model Estimation and peak detection.")
pset <- proFIAset(
path,
ppm,
dmz=dmz,
parallel = parallel,
BPPARAM = bpparam,
noiseEstimation = TRUE
)
if (is.null(ppmGroup)) {
warning("ppmGroup is null default value is half of the ppm parameter value.")
ppmGroup <- ppm / 2
}
mg <- "Step 2 : Peak Grouping."
mg <- ifelse(maxo,
paste(mg, "Max Intensity will be used."),
paste(mg, "Area will be used."))
message(mg)
pset <- group.FIA(pset, ppmGroup, fracGroup = fracGroup, dmzGroup = dmzGroup)
pset <- makeDataMatrix(pset,maxo=maxo)
message("Step 3 : Missing values imputation.")
if(imputation!="None"){
pset <- impute.FIA(pset,method=imputation,...)
}
message(paste("Processing finished."))
plot(pset)
pset
}
setMethod("cut", "proFIAset", function(x, subsample) {
if (any(!(subsample %in% 1:nrow(x@classes)))) {
stop(
"Sample needs to be integer corresponding to a sample of the proFIAset object. To see
a list of the sample use the getPhenoClasses method."
)
}
x@classes <- x@classes[subsample,]
dico <- list()
for (i in 1:length(subsample)) {
dico[subsample[i]] = i
}
x@peaks <- x@peaks[which(x@peaks[, "sample"] %in% subsample),]
x@peaks[, "sample"] <- unlist(dico[x@peaks[, "sample"]])
x@dataMatrix <- matrix(0, nrow = 0, ncol = 0)
x@group <- matrix(0, nrow = 0, ncol = 0)
x@groupidx <- list()
x
})
# #####BETA THose feature won(t be exported but will be disponible in near future)
# setGeneric("compareClasses", function(object, ...)
# standardGeneric("compareClasses"))
#
# #' t-test of variables to check mean egality.
# #'
# #'Compare the mean of all the variables present in the
# #'data between mulltiples classes.
# #'
# #' @param object A proFIAset object.
# #' @param subsample If chracter a subset of the class to be plotted
# #' if numeric a subset of the sample to be plotted.
# #' @return A filled proFIAset object witht he pvalue and the ofld change for the
# #' classes. If a 0 remaines, the majority of the signal are im
# #' @aliases compareClasses compareClasses,proFIAset-method
# #' @examples
# #' print("examples to be put here")
# setMethod("compareClasses", "proFIAset", function(object, subsample = NULL) {
# numGroup <- length(unique(object@classes))
# if (is.null(subsample))
# subsample <- 1:nrow(object@classes)
# if (numGroup == 1)
# stop("Multiple classes needs to be provided.")
# if (numGroup > 2)
# message("More than 2 each group will be tested against each other.")
#
#
# #####Generating the list of sample to do
# uSample <- unique(object@classes[, 2])
# toCompare <- combn(uSample, 2)
# toCompare <- toCompare[, which(toCompare[1,] != toCompare[2,]), drop =
# FALSE]
# print(toCompare)
# nameVec <- paste(toCompare[1,], toCompare[2,], sep = "_")
# lRes <- list()
# dMat <- dataMatrix(object)
# for (i in 1:ncol(toCompare)) {
# vx <- which(object@classes[, 2] == toCompare[1, i])
# vy <- which(object@classes[, 2] == toCompare[2, i])
# nx <- length(vx)
# ny <- length(vy)
# pvallab <- paste("p.value", nameVec[i], sep = "_")
# abslab <- paste("p.value", nameVec[i], sep = "_")
# ###Removing the 0 if there is some.
# submat <- dataMatrix(object)[, c(vx, vy)]
#
# ##Calculating the p-value.
# pvalv <- apply(submat, 1, function(x, nx, ny) {
# px0 <- which(x[1:nx] == 0)
# if (length(px0) != 0) {
# nx <- nx - length(px0)
# x <- x[-px0]
# }
# py0 <- which(x[(nx + 1):ny] == 0)
# if (length(py0) != 0) {
# ny <- ny - length(py0)
# x <- x[-py0]
# }
# if (nx == 0 | ny == 0)
# return(NA)
# vt <- t.test(x[1:nx], x[(nx + 1):(nx + ny)])
# c(vt[["p.value"]])
# }, nx = nx, ny = ny)
#
# ##Calculating the fold change.
# foldv <- apply(submat, 1, function(x, nx, ny) {
# px0 <- which(x[1:nx] == 0)
# if (length(px0) != 0) {
# nx <- nx - length(px0)
# x <- x[-px0]
# }
# py0 <- which(x[(nx + 1):ny] == 0)
# if (length(py0) != 0) {
# ny <- ny - length(py0)
# x <- x[-py0]
# }
# if (nx == 0)
# return(0)
# if (ny == 0)
# return(Inf)
# fold <- mean(x[1:nx]) / mean(x[(nx + 1):(nx + ny)])
# fold
# }, nx = nx, ny = ny)
#
# #Cal
#
#
# lRes[[i]] = pvalv
# }
# lRes <- do.call("cbind", lRes)
# vgroup <- object@group
# ngroup <- colnames(vgroup)
# vgroup <- cbind(vgroup, lRes)
# colnames(vgroup) <- c(ngroup, nameVec)
# object@group <- vgroup
# object
# })
plotVoidRaw <-
function(mz, int, scanindex, scantime, title = NULL,bandl = NULL,legend=TRUE, ...) {
vnum <- diff(c(scanindex, length(mz)))
vtime <- rep(scantime, vnum)
int <- log10(int)
if (is.null(title))
title <- paste("Raw data")
xlim <- NULL
ylim <- NULL
###Checking the xlim and ylim arg
largs <- list(...)
if ("xlim" %in% names(largs)) {
xlim <- largs[["xlim"]]
pok <- which(vtime <= xlim[2] & vtime >= xlim[1])
if (length(pok) > 0) {
vtime <- vtime[pok]
mz <- mz[pok]
int <- int[pok]
}
} else{
xlim <- c(0, max(scantime))
}
if ("ylim" %in% names(largs)) {
ylim <- largs[["ylim"]]
pok <- which(mz <= ylim[2] & mz >= ylim[1])
if (length(pok) > 0) {
vtime <- vtime[pok]
mz <- mz[pok]
int <- int[pok]
}
}
size <- NULL
if ("size" %in% names(largs)) {
size <- largs[["size"]]
} else{
size <- 0.4
}
##Getting the color
vpal <- colorRampPalette(c("green", "orange", "red"))
###Making the color vec
rInt <- range(int)
rInt[1] <- floor(rInt[1] - 0.01)
rInt[2] <- ceiling(rInt[2] + 0.01)
rcol <- seq(rInt[1], rInt[2], length = 50)
vcol <- vpal(50)[.bincode(int, rcol)]
if(legend){
layout(matrix(1:2, ncol = 2),
widths = c(3, 1),
heights = c(1, 1))
}
legend_image <- as.raster(matrix(rev(vpal(50)), ncol = 1))
plot(
vtime,
mz,
main = title,
xlab = "Time (s)",
ylab = "m/z",
cex = size,
col = vcol,
xlim = xlim,
ylim = ylim,
pch = 19
)
if(!is.null(bandl)){
abline(h=bandl,col="purple",lwd=0.5,lty=2)
}
if(legend){
plot(
c(0, 2),
c(rInt[1], rInt[2]),
type = 'n',
axes = FALSE
,
xlab = '',
ylab = '',
main = 'log10(Intensity)',
cex.main = 0.9
)
text(
x = 1.5,
y = seq(rInt[1], rInt[2], l = rInt[2] - rInt[1] + 1),
labels = seq(rInt[1], rInt[2], l = rInt[2] - rInt[1] + 1)
)
rasterImage(legend_image, 0, rInt[1], 1, rInt[2])
layout(1)
}
}
# setGeneric("plotRaw", function(object, ...)
# standardGeneric("plotRaw"))
#' Plotting of raw data
#'
#'Plot the raw data from a proFIAset object,the
#'the type of plot determines if the full raw data
#'needs to be plotted or only the data conressponding to
#'the detected peaks needs to be plottes. The path in the classes
#'table of the proFIAset object needs to be correct.
#'
#' @export
#' @param object A proFIAset object.
#' @param type \code{"raw"} indicate that raw data needs to be plotted
#' and \code{"peak"} indicate that only the filtered signals will be plotted.
#' @param sample The number of the sample in the object classes table
#' to be plotted. The classes table can be taken using the phenoClasses function.
#' @param bandl A boolean shall a line be added on the detected bands. Only used in type is set to \code{"peak"}
#' @param legend Shall the legend be plotted along the graph
#' @param ... xlim,ylim and size to be passed to plot functions.
#' @return No value is returned.
#' @aliases plotRaw plotRaw,proFIAset-method
#' @examples
#' if(require("plasFIA")){
#' data(plasSet)
#'
#' #Visualising the raw data
#' plotRaw(plasSet,type="raw",ylim=c(215.9,216.2),sample=4)
#'
#' #Plotting the filtered signals only.
#' plotRaw(plasSet,type="peaks",ylim=c(215.9,216.2),sample=4)
#' }
setMethod("plotRaw", "proFIAset", function(object,
type = c("raw", "peaks"),
sample = NULL,
bandl = TRUE,
legend=TRUE,
...) {
type <- match.arg(type)
if (!(sample %in% 1:nrow(object@classes))) {
stop("sample needs to be a row of the class table.")
}
xraw <- xcmsRaw(object@classes[sample, 1])
if (type == "raw") {
title <- paste("Raw data", getRawName(xraw@filepath))
plotVoidRaw(xraw@env$mz,
xraw@env$intensity,
xraw@scanindex,
xraw@scantime,
title = title,
legend=legend,...)
}
if (type == "peaks") {
###Verifying that the peak list is there
if (nrow(object@peaks) == 0)
stop("Object needs to be peak picked.")
pok <- which(object@peaks[, "sample"] == sample)
if (length(pok) == 0)
stop("no peaks have been detected for the chose sample.")
peaklist <- object@peaks[pok, , drop = FALSE]
largs <- list(...)
if ("ylim" %in% names(largs)) {
ylim <- largs[["ylim"]]
pok <- which(peaklist[, "mzmin"] < ylim[2] &
peaklist[, "mzmax"] > ylim[1])
if (length(pok) > 0) {
peaklist <- peaklist[pok, , drop = FALSE]
}
}
if (nrow(peaklist) == 0) {
stop("Nothing to plot.")
}
title <- paste("Peaks data", getRawName(xraw@filepath))
matAllP <- apply(peaklist, 1, function(x, xraw) {
pok <- which(xraw@env$mz >= x["mzmin"] & xraw@env$mz <= x["mzmax"])
vscan <- .bincode(pok, breaks = c(xraw@scanindex, length(xraw@env$mz)))
ppok <- which(vscan >= x["scanMin"] & vscan <= x["scanMax"])
return(c(pok[ppok]))
}, xraw = xraw)
matAllP <- unlist(matAllP)
vscan <- .bincode(matAllP, breaks = c(xraw@scanindex, length(xraw@env$mz)))
vmz <- xraw@env$mz[matAllP]
vint <- xraw@env$intensity[matAllP]
vindex <- table(vscan)
tindex <- rep(0, length(xraw@scantime))
tindex[as.numeric(names(vindex))] <- vindex
vindex <- tindex
vindex <- c(0, cumsum(vindex))
vindex <- vindex[-length(vindex)]
voo <- order(vscan)
vmz <- vmz[voo]
vint <- vint[voo]
toReturn <- plotVoidRaw(vmz, vint, vindex, xraw@scantime,bandl = peaklist[,"mz"],title = title,legend=legend,...)
}
})
keysVariableMetadata<-function(x){
switch(
x,
mzMed="Median mz of the signal in the different files",
mzMin="Minimum mz of the signal in the different files",
mzMax="Maximum mz of the signal in the different files",
sizeSamp="Mean size of the mass traces in the samples",
scanMin="The minimum scan of the mass trace in the samples",
scanMax="The maximum scan of the mass trace in the samples",
nPeaks="The number of sample in whic the signal have been detected",
meanSolvent="The mean level of solvent in the sample.",
signalOverSolventPvalueMean="The mean p-value in the group",
corSampPeakMean="The mean correlation with the injection peak in the sample",
signalOverSolventRatioMean="mean of signal on solvent intensity ratio",
timeShifted="indicator of time scaled signal",
signalOverSolventPvalueMean="Mean p-value of the grouped signal."
)
}
setGeneric("exportExpressionSet", function(object, ...)
standardGeneric("exportExpressionSet"))
#' Export proFIAset to ExpressionSet
#'
#' Eport the data from a proFIAset object as an \code{ExpressionSet} object
#' from the \code{Biobase} package package.
#'
#' @export
#' @param object A proFIAset object.
#' @param colgroup Labels corresponding to the column names
#' of the group table.
#' @return An \code{ExpressionSet} object from the \code{Biobase} package
#' @aliases exportExpressionSet exportExpressionSet,proFIAset-method
#' @examples
#' if(require("plasFIA")&require("Biobase")){
#' data(plasSet)
#' eset<-exportExpressionSet(plasSet)
#' eset
#' }
setMethod("exportExpressionSet", "proFIAset",
function(object,colgroup=c("mzMed","scanMin","scanMax","nPeaks","corSampPeakMean","signalOverSolventRatioMean","timeShifted","signalOverSolventPvalueMean")){
if(nrow(object@dataMatrix)==0){
stop("Data matrix needs to be created for the object to be converted in ExpressionSet")
}
if(!all(colgroup %in% colnames(object@group))) stop("Elements of colgroup are supposed to be the column
names of the group table of the proFIAset object.")
fData <- as.data.frame(object@group[,colgroup])
row.names(fData) <- getUniqueIds(paste("M", sprintf("%0.4f", object@group[, 1]), sep = ""))
vecLab <- sapply(colgroup,keysVariableMetadata)
metaData<-data.frame(labelDescription=vecLab)
eset <- ExpressionSet(object@dataMatrix,featureData=AnnotatedDataFrame(data=fData, varMetadata=metaData))
eset
})
setGeneric("exportPeakTable", function(object, ...)
standardGeneric("exportPeakTable"))
#' Export proFIAset as a peak table.
#'
#'Export the data from a proFIAset object as
#'a peak table which containes the values
#'of measured for each variables for each samples
#'and supplementary information.
#'
#' @export
#' @param object A proFIAset object.
#' @param colgroup Labels corresponding to the column names
#' of the group table which will be added to the peak table.
#' @param mval How will missing values be treated, in default they
#' will be set to NA, or you can keep 0.
#' @param filename The name of the file for the peak table to be exported.
#' @return A dataframe containg the datasets.
#' @aliases exportPeakTable exportPeakTable,proFIAset-method
#' @examples
#' if(require("plasFIA")){
#' data(plasSet)
#'
#' #Creating the peak table
#' ptable<-exportPeakTable(plasSet)
#' head(ptable)
#'
#' #Directly in a file
#' \dontrun{ptable<-exportPeakTable(plasSet,filename="peak_table.tsv")}
#' }
setMethod("exportPeakTable", "proFIAset",
function(object,colgroup=c("mzMed","corSampPeakMean","meanSolvent","signalOverSolventRatioMean","timeShifted","signalOverSolventPvalueMean"),
mval=c("NA","zero"),filename=NULL){
mval <- match.arg(mval)
def <- ifelse(mval=="NA",NA,0)
if(nrow(object@dataMatrix)==0){
stop("Data matrix needs to be created for the object to be converted in peak table.")
}
if(!all(colgroup %in% colnames(object@group))) stop("Elements of colgroup are supposed to be the column
names of the group table of the proFIAset object.")
vcnames <- NULL
vcnames <- c(colnames(object@dataMatrix),colgroup)
peaktable <- cbind(object@dataMatrix,object@group[,colgroup])
peaktable <- as.data.frame(peaktable)
##Getting the 0
p0NA <- which(peaktable[,1:ncol(object@dataMatrix)]==0|is.na(peaktable[,1:ncol(object@dataMatrix)]),arr.ind=TRUE)
if(length(p0NA)!=0){
peaktable[,1:ncol(object@dataMatrix)][p0NA]<-def
}
colnames(peaktable)<-vcnames
rownames(peaktable)<-getUniqueIds(rownames(object@dataMatrix))
if(!is.null(filename)){
cpeak <- c("id",colnames(peaktable))
ctable <- cbind(rownames(peaktable),peaktable)
colnames(ctable)<-cpeak
write.table(ctable,sep="\t",row.names = FALSE,quote =TRUE,file = filename)
}
return(invisible(peaktable))
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.