R/wilcoxon.R

Defines functions wilcoxInt select_thrs wilcoxExt

Documented in wilcoxExt

#' Extension on Pairwise Mann Whitney Wilcoxon Test for partitioning
#'
#' Extends the Pairwise Mann Whitney Wilcoxon Test by combining
#' hierarchical clustering for partition.
#'
#' @param sce A SingleCellExperiment containing assays (\code{"ratio"},
#' \code{"counts"}) and colData \code{"x"}
#' @param genecluster which gene cluster result want to be returned.
#' Usually identified interesting gene cluster pattern by
#' \code{\link{summaryAllelicRatio}}
#' @param threshold a vector with candidate thresholds for raw p-value
#' cut-off. Default is 10^seq(from=-2,to=-0.4,by=0.2).
#' For details please see vignette
#' @param adj.matrix an adjacency matrix with 1 indicates cell states
#' allowed to be grouped together, 0 otherwise.
#' @param p.adjust.method method for adjusting p-values
#' (see \code{\link[stats]{p.adjust}}). Can be abbreviated
#' @param ncores A cluster object created by \code{\link[parallel]{makeCluster}}.
#' Or an integer to indicate number of child-processes
#' (integer values are ignored on Windows) for parallel evaluations
#' @param ... additional arguments to pass to \code{\link[stats]{wilcox.test}}.
#'
#' @return A matrix grouping factor partition and
#' the significant cut-off threshold
#' are returned in metadata \code{"partition"} and \code{"threshold"}.
#' Partation also stored in colData\code{"part"}. Note we recommend the returned 
#' \code{"threshold"} is not at the ends of input \code{"threshold"}.
#'
#' @examples
#' library(S4Vectors)
#' sce <- makeSimulatedData()
#' sce <- preprocess(sce)
#' sce <- geneCluster(sce, G = seq_len(4))
#' sce_sub <- wilcoxExt(sce, genecluster = 1)
#' metadata(sce_sub)$partition
#' metadata(sce_sub)$threshold
#'
#' # Suppose we have 4 cell states, if we don't want cell state 1
#' # to be grouped together with other cell states
#' adj.matrix <- 1 - diag(4)
#' colnames(adj.matrix) <- rownames(adj.matrix) <- levels(sce$x)
#' adj.matrix[1, c(2, 3, 4)] <- 0
#' adj.matrix[c(2, 3, 4), 1] <- 0
#' thrs <- 10^seq(from = -2, to = -0.4, by = 0.1)
#' sce_sub <- wilcoxExt(sce,
#'   genecluster = 1, threshold = thrs,
#'   adj.matrix = adj.matrix
#' )
#' metadata(sce_sub)$partition
#' @importFrom dplyr left_join
#' @importFrom plyr mutate
#' @importFrom stats pairwise.wilcox.test
#' @importFrom pbapply pblapply
#'
#' @export
wilcoxExt <- function(sce, genecluster, threshold, adj.matrix,
                      p.adjust.method = "none", ncores = NULL, ...) {
  if (missing(threshold)) {
    threshold <- 10^seq(from = -2, to = -0.4, by = 0.2)
  }
  if (missing(genecluster)) {
    stop("No gene cluster number")
  }
  nct <- nlevels(sce$x)
  if (missing(adj.matrix)) {
    adj.matrix <- matrix(1, nct, nct)
  }
  stopifnot(c("ratio", "counts") %in% assayNames(sce))
  stopifnot("x" %in% names(colData(sce)))
  stopifnot("cluster" %in% names(rowData(sce)))

  ## construct data frame
  sce_sub <- sce[rowData(sce)$cluster == genecluster, ]
  cl_ratio <- as.vector(unlist(assays(sce_sub)[["ratio"]]))
  cl_total <- as.vector(unlist(counts(sce_sub)))
  dat <- data.frame(
    ratio = cl_ratio,
    x = factor(rep(sce_sub$x, each = length(sce_sub))),
    cts = cl_total
  )

  obj <- pblapply(threshold, select_thrs,
    dat = dat, p.adjust.method = p.adjust.method,
    adj.matrix = adj.matrix, cl = ncores, ...
  )

  cl <- do.call(rbind, lapply(obj, `[[`, 1))
  loss1 <- do.call(rbind, lapply(obj, `[[`, 2))
  partition <- data.frame(
    part = factor(cl[which.min(loss1), ]),
    x = levels(sce_sub$x)
  )
  colData(sce_sub)$part <- partition$part[match(colData(sce_sub)$x, partition$x)]
  metadata(sce_sub)$partition <- partition
  metadata(sce_sub)$threshold <- threshold[which.min(loss1)]
  return(sce_sub)
}

## not exported
select_thrs <- function(threshold, dat, p.adjust.method, adj.matrix, ...) {
  fit <- wilcoxInt(dat,
    p.adjust.method = p.adjust.method,
    threshold = threshold, adj.matrix = adj.matrix, ...
  )
  label <- data.frame(type = factor(levels(dat$x)), par = factor(fit))
  dat2 <- dat %>%
    left_join(label, by = c("x" = "type"))
  dat2 <- dat2 %>%
    group_by(.data$par) %>%
    dplyr::mutate(grpmean = mean(.data$ratio, na.rm = TRUE))
  ## loss function
  loss1 <- nrow(dat) * log(sum((dat2$ratio - dat2$grpmean)^2, na.rm = TRUE) /
    nrow(dat2)) + length(unique(fit)) * log(nrow(dat2))
  return(list(cl = fit, loss1 = loss1))
}

## not exported
wilcoxInt <- function(data, threshold = 0.05,
                      p.adjust.method = "none", adj.matrix, ...) {
  nct <- length(levels(data$x))
  res <- pairwise.wilcox.test(data$ratio, data$x,
    p.adjust.method = p.adjust.method, ...
  )
  adj <- as.data.frame(res$p.value)[lower.tri(res$p.value, diag = TRUE)]
  ## Wilcoxon output Nan if ratio of two cell types are exactly same
  adj <- ifelse(is.nan(adj), 1, adj)
  b <- matrix(0, nct, nct)
  b[lower.tri(b, diag = FALSE)] <- adj
  b2 <- b + t(b)
  diag(b2) <- 1
  b2[which(adj.matrix == 0)] <- 0
  ## binarize p-value to be seen as dismilarity matrix
  bb <- ifelse(b2 < threshold, 1, 0)
  ## hierarchical cluster on adjacency matrix
  clust <- hclust(as.dist(bb))
  my.clusters <- cutree(clust, h = 0)
  return(my.clusters)
}
Wancen/airpart documentation built on March 12, 2023, 11:53 a.m.