R/NanoStringGeoMxSet-qc.R

Defines functions setProbeCountFlags setLOQFlags setHighCountFlags setTargetFlags removeFlagProbes appendFeatureFlags appendSampleFlags checkCutoffs changeLocalsToNA setGrubbsFlags setProbeRatioFlags setBioProbeQCFlags setAreaFlags setNucleiFlags setGeoMxQCFlags setHighNTCFlags setLowNegFlags setBackgroundQCFlags setSaturationFlags setAlignedFlags setStitchedFlags setTrimmedFlags setLowReadFlags setSeqQCFlags setSegmentQCFlags

Documented in setBackgroundQCFlags setBioProbeQCFlags setGeoMxQCFlags setSegmentQCFlags setSeqQCFlags

DEFAULTS <- list(minSegmentReads=1000, percentTrimmed=80, percentStitched=80, 
    percentAligned=80, percentSaturation=50, minNegativeCount=10, 
    maxNTCCount=60, minNuclei=200, minArea=16000, minProbeCount=10, 
    minProbeRatio=0.1, outlierTestAlpha=0.01, percentFailGrubbs=20, 
    loqCutoff=1.0, highCountCutoff=10000)

#' Add segment QC flags to protocol data
#' 
#' @param object name of the object class to perform QC on
#' \enumerate{
#'     \item{NanoStringGeoMxSet, use the NanoStringGeoMxSet class}
#' }
#' @param qcCutoffs list of cutoffs and thresholds to use for QC
#' 
#' @return \code{NanoStringGeoMxSet} object with \code{QCFlags} data frame 
#'             appended to \code{protocolData}
#' 
#' @examples
#' datadir <- system.file("extdata", "DSP_NGS_Example_Data",
#'                        package="GeomxTools")
#' demoData <- readRDS(file.path(datadir, "/demoData.rds"))
#' setSegmentQCFlags(demoData[,1:10], 
#'                   qcCutoffs=list(minSegmentReads=1000, 
#'                                  percentAligned=80, 
#'                                  percentSaturation=50,
#'                                  minNegativeCount=10, 
#'                                  maxNTCCount=60,
#'                                  minNuclei=16000, 
#'                                  minArea=20))
#' 
#' @export
#' 
setSegmentQCFlags <- function(object, qcCutoffs=DEFAULTS) {
    qcCutoffs <- checkCutoffs(qcCutoffs)
    object <- setSeqQCFlags(object=object, qcCutoffs=qcCutoffs)
    object <- setBackgroundQCFlags(object=object, qcCutoffs=qcCutoffs)
    object <- setGeoMxQCFlags(object=object, qcCutoffs=qcCutoffs)
    return(object)
}

#' Add sequencing QC flags to NanoStringGeoMxSet object protocol data
#' 
#' @param object name of the NanoStringGeoMxSet object to perform QC on
#' @param qcCutoffs a list of qc cutoffs to use
#' \enumerate{
#'     \item{minSegmentReads, 
#'           numeric to flag segments with less than this number of reads}
#'     \item{percentAligned, 
#'           numeric to flag segments with less than this percent of aligned reads}
#'     \item{percentSaturation, 
#'           numeric to flag segments with less than this percent of 
#'           sequencing saturation}
#' }
#' @return \code{NanoStringGeoMxSet} object with \code{QCFlags} data frame 
#'             appended to \code{protocolData}
#' 
#' @examples
#' datadir <- system.file("extdata", "DSP_NGS_Example_Data",
#'                        package="GeomxTools")
#' demoData <- readRDS(file.path(datadir, "/demoData.rds"))
#' setSeqQCFlags(demoData[,1:10], 
#'                  qcCutoffs=list(minSegmentReads=1000, 
#'                                 percentAligned=80, 
#'                                 percentSaturation=50))
#' 
#' @export
#' 
setSeqQCFlags <- function(object, qcCutoffs=DEFAULTS) {
    qcCutoffs <- checkCutoffs(qcCutoffs)
    object <- setLowReadFlags(object=object, 
        cutoff=qcCutoffs[["minSegmentReads"]])
    object <- setTrimmedFlags(object=object, 
        cutoff=qcCutoffs[["percentTrimmed"]])
    object <- setStitchedFlags(object=object, 
        cutoff=qcCutoffs[["percentStitched"]])
    object <- setAlignedFlags(object=object, 
        cutoff=qcCutoffs[["percentAligned"]])
    object <- setSaturationFlags(object=object, 
        cutoff=qcCutoffs[["percentSaturation"]])
    return(object)
}

setLowReadFlags <- function(object, cutoff=DEFAULTS[["minSegmentReads"]]) {
    lowReads <- sData(object)["Raw"] < cutoff
    colnames(lowReads) <- "LowReads"
    object <- appendSampleFlags(object, lowReads)
    return(object)
}

setTrimmedFlags <- function(object, cutoff=DEFAULTS[["percentTrimmed"]]) {
    percentTrim <- 100 * (sData(object)["Trimmed"] / sData(object)["Raw"])
    colnames(percentTrim) <- "Trimmed (%)"
    protocolData(object)[["Trimmed (%)"]] <- percentTrim
    percentTrim <- percentTrim < cutoff
    colnames(percentTrim) <- "LowTrimmed"
    object<- appendSampleFlags(object, percentTrim)
    return(object)
}

setStitchedFlags <- function(object, cutoff=DEFAULTS[["percentStitched"]]) {
    percentStitch <- 100 * (sData(object)["Stitched"] / sData(object)["Raw"])
    colnames(percentStitch) <- "Stitched (%)"
    protocolData(object)[["Stitched (%)"]] <- percentStitch
    percentStitch <- percentStitch < cutoff
    colnames(percentStitch) <- "LowStitched"
    object<- appendSampleFlags(object, percentStitch)
    return(object)
}

setAlignedFlags <- function(object, cutoff=DEFAULTS[["percentAligned"]]) {
    percentAlign <- 100 * (sData(object)["Aligned"] / sData(object)["Raw"])
    colnames(percentAlign) <- "Aligned (%)"
    protocolData(object)[["Aligned (%)"]] <- percentAlign
    percentAlign <- percentAlign < cutoff
    colnames(percentAlign) <- "LowAligned"
    object<- appendSampleFlags(object, percentAlign)
    return(object)
}

setSaturationFlags <- function(object, cutoff=DEFAULTS[["percentSaturation"]]) {
    percentSaturated <- 
        100 * (1 - sData(object)["DeduplicatedReads"] / sData(object)["Aligned"])
    colnames(percentSaturated) <- "Saturated (%)"
    protocolData(object)[["Saturated (%)"]] <- percentSaturated
    percentSaturated <- percentSaturated < cutoff
    colnames(percentSaturated) <- "LowSaturation"
    object<- appendSampleFlags(object, percentSaturated)
    return(object)
}


#' Add background QC flags to NanoStringGeoMxSet object protocol data
#' 
#' @param object name of the NanoStringGeoMxSet object to perform QC on
#' @param qcCutoffs a list of qc cutoffs to use
#' \enumerate{
#'     \item{minNegativeCount, 
#'           numeric to flag segments with less than this number of counts}
#'     \item{maxNTCCount, 
#'           numeric to flag segments with more than this number of NTC counts}
#' }
#' @return \code{NanoStringGeoMxSet} object with \code{QCFlags} data frame 
#'             appended to \code{protocolData}
#' 
#' @examples
#' datadir <- system.file("extdata", "DSP_NGS_Example_Data",
#'                        package="GeomxTools")
#' demoData <- readRDS(file.path(datadir, "/demoData.rds"))
#' setBackgroundQCFlags(demoData[,1:10], 
#'                  qcCutoffs=list(minNegativeCount=10, 
#'                                 maxNTCCount=60))
#' 
#' @export
#' 
setBackgroundQCFlags <- function(object, qcCutoffs=DEFAULTS) {
    qcCutoffs <- checkCutoffs(qcCutoffs)
    if(analyte(object) == "RNA"){
      object <- setLowNegFlags(object=object, 
                               cutoff=qcCutoffs[["minNegativeCount"]])
    }
    object <- setHighNTCFlags(object=object, 
        cutoff=qcCutoffs[["maxNTCCount"]])
    return(object)
}

setLowNegFlags <- function(object, cutoff=DEFAULTS[["minNegativeCount"]]) {
    negativeGeoMeans <- 
        esBy(negativeControlSubset(object), 
             GROUP="Module", 
             FUN=function( x ) { 
                 assayDataApply( x, MARGIN = 2, FUN=ngeoMean, elt="exprs" ) 
             }) 
    lowNegs <- 
        data.frame("LowNegatives"=apply(negativeGeoMeans < cutoff, 1, sum) > 0)
    object <- appendSampleFlags(object, lowNegs)
    return(object)
}

setHighNTCFlags <- function(object, cutoff=DEFAULTS[["maxNTCCount"]]) {
    if (!is.null(sData(object)[["NTC"]])) {
        highNTC <- sData(object)["NTC"] > cutoff
        colnames(highNTC) <- "HighNTC"
        object <- appendSampleFlags(object, highNTC)
    }
    return(object)
}

#' Add GeoMx segment QC flags to NanoStringGeoMxSet object protocol data
#' 
#' @param object name of the NanoStringGeoMxSet object to perform QC on
#' @param qcCutoffs a list of qc cutoffs to use
#' \enumerate{
#'     \item{minNuclei, 
#'           numeric to flag segments with less than this number of nuclei}
#'     \item{minArea, 
#'           numeric to flag segments with less than this um^2 area}
#' }
#' @return \code{NanoStringGeoMxSet} object with \code{QCFlags} data frame 
#'         appended to \code{protocolData}
#' 
#' @examples
#' datadir <- system.file("extdata", "DSP_NGS_Example_Data",
#'                        package="GeomxTools")
#' demoData <- readRDS(file.path(datadir, "/demoData.rds"))
#' setGeoMxQCFlags(demoData[,1:10], 
#'                  qcCutoffs=list(minNuclei=16000, 
#'                                 minArea=20))
#' 
#' @export
#' 
setGeoMxQCFlags <- function(object, qcCutoffs=DEFAULTS) {
    qcCutoffs <- checkCutoffs(qcCutoffs)
    object <- setNucleiFlags(object=object, 
        cutoff=qcCutoffs[["minNuclei"]])
    object <- setAreaFlags(object=object, 
        cutoff=qcCutoffs[["minArea"]])
    return(object)
}

setNucleiFlags <- function(object, cutoff=DEFAULTS[["minNuclei"]]) {
    if (!is.null(sData(object)[["nuclei"]])) {
        lowNuclei <- sData(object)["nuclei"] < cutoff
        colnames(lowNuclei) <- "LowNuclei"
        object <- appendSampleFlags(object, lowNuclei)
    }
    return(object)
}

setAreaFlags <- function(object, cutoff=DEFAULTS[["minArea"]]) {
    if (!is.null(sData(object)[["area"]])) {
        lowArea <- sData(object)["area"] < cutoff
        colnames(lowArea) <- "LowArea"
        object <- appendSampleFlags(object, lowArea)
    }
    return(object)
}

#' Add probe QC flags to NanoStringGeoMxSet object feature data
#' 
#' @param object name of the NanoStringGeoMxSet object to perform QC on
#' @param qcCutoffs a list of qc cutoffs to use
#' \enumerate{
#'     \item{minProbeRatio, 
#'           numeric between 0 and 1 to flag probes that have 
#'           (geomean probe in all segments) / (geomean probes within target)
#'           less than or equal to this ratio}
#'     \item{percentFailGrubbs, 
#'           numeric to flag probes that fail Grubb's test in 
#'           greater than or equal this percent of segments}
#' }
#' @param removeLocalOutliers boolean to determine if 
#'     local outliers should be excluded from \code{exprs} matrix
#'
#' @return \code{NanoStringGeoMxSet} object with \code{QCFlags} data frame 
#'         appended to \code{protocolData}
#' 
#' @examples
#' datadir <- system.file("extdata", "DSP_NGS_Example_Data",
#'                        package="GeomxTools")
#' demoData <- readRDS(file.path(datadir, "/demoData.rds"))
#' demoData <- shiftCountsOne(demoData, elt="exprs", useDALogic=TRUE)
#' setBioProbeQCFlags(demoData[,1:10], 
#'                    qcCutoffs=list(minProbeRatio=0.1,
#'                                   percentFailGrubbs=20),
#'                    removeLocalOutliers=TRUE)
#' 
#' @export
#' 
setBioProbeQCFlags <- function(object, 
                               qcCutoffs=DEFAULTS, 
                               removeLocalOutliers=TRUE) {
    qcCutoffs <- checkCutoffs(qcCutoffs)
    object <- setProbeRatioFlags(object=object, 
        cutoff=qcCutoffs[["minProbeRatio"]])
    object <- setGrubbsFlags(object=object,
                             minCount=qcCutoffs[["minProbeCount"]],
                             alphaCutoff=qcCutoffs[["outlierTestAlpha"]],
                             percFail=qcCutoffs[["percentFailGrubbs"]])
    if (removeLocalOutliers) {
        object <- changeLocalsToNA(object)
    }
    return(object)
}

setProbeRatioFlags <- function(object, 
                               cutoff=DEFAULTS[["minProbeRatio"]]) {
    # Skip targets with single probes
    multiProbeTable <- with(object, table(TargetName)) > 1L
    multiProbeTargs <- 
        names(multiProbeTable)[which(multiProbeTable, arr.ind=TRUE)]
    if (length(multiProbeTargs) > 0) {
        multiObject <- 
            object[fData(object)[["TargetName"]] %in% multiProbeTargs, ]
    } else {
        warning("Object has no multi-probe targets. ",
                "No ratio testing can be performed.")
        return(object)
    }

    probeCounts <- data.table(cbind(fData(multiObject)[, c("TargetName", 
                                                           "Module")],
                                    list(RTS_ID=featureNames(multiObject)),
                                    exprs(multiObject)))
    collapsedCounts <- as.data.frame(probeCounts[, lapply(.SD, ngeoMean),
                                              .SDcols=!c("RTS_ID"),
                                              by=c("TargetName", "Module")])
    targetMeans <- 
        apply(collapsedCounts[, 
                  colnames(collapsedCounts) %in% sampleNames(multiObject)],
                  1, ngeoMean)
    names(targetMeans) <- collapsedCounts[["TargetName"]]

    probeMeans <- apply(assayDataElement(multiObject, elt="exprs"), 
        MARGIN=1, FUN=ngeoMean)
    multiProbeRatios <- probeMeans / targetMeans[probeCounts$TargetName]

    probeRatios <- data.frame("ProbeRatio"=rep(1, dim(object)[1L]), 
                              row.names=featureNames(object))
    probeRatios[names(multiProbeRatios), "ProbeRatio"] <- 
        multiProbeRatios

    featureData(object)[["ProbeRatio"]] <- probeRatios
    probeRatioFlags <- probeRatios <= cutoff
    colnames(probeRatioFlags) <- "LowProbeRatio"
    object <- appendFeatureFlags(object, probeRatioFlags)
    return(object)
}

setGrubbsFlags <- function(object, 
                           alphaCutoff=DEFAULTS[["outlierTestAlpha"]], 
                           minCount=DEFAULTS[["minProbeCount"]],
                           percFail=DEFAULTS[["percentFailGrubbs"]]) {

    #Remove probes with low probe ratios prior to Grubb's test
    if (!"ProbeRatio" %in% fvarLabels(object)) {
        warning("Probe ratio QC has not yet been performed. ",
                "Suggests running probe ratio QC then re-running Grubbs QC.")
        multiObject <- object
    } else {
        multiObject <- 
            object[!fData(object)[["QCFlags"]][, "LowProbeRatio"], ]
    }
    
    # Skip targets with less than 3 probes
    multiProbeTable <- with(multiObject, table(TargetName)) >= 3L
    multiProbeTargs <- 
        names(multiProbeTable)[which(multiProbeTable, arr.ind=TRUE)]
    if (length(multiProbeTargs) > 0) {
        multiObject <- 
            multiObject[fData(multiObject)[["TargetName"]] %in% multiProbeTargs, ]
    } else {
        warning("Object has no targets with at least 3 probes. ",
                "No outlier testing can be performed.")
        return(object)
    }

    grubbsResults <- 
        lapply(unique(fData(multiObject)[["Module"]]), FUN=function(x) {
            modObject <- subset(multiObject, subset=Module == x)
            assayDataElement(modObject, elt="log10") <- 
                logtBase(exprs(modObject), base=10)
            targetOutliers <- 
                esBy(modObject, GROUP="TargetName", simplify=FALSE, FUN=function(y) {
                    currExprs <- assayDataElement(y, elt="log10")
                    currResult <- apply(currExprs, 2, function(z) { 
                        z <- z[!is.na(z)]
                        if (max(z) < logtBase(minCount, base=10)) {
                            return(NA)
                        }
                        if (length(unique(z)) == 1) {
                            return(NA)
                        }
                        grubbsTest <- 
                            suppressWarnings(grubbs.test(z, two.sided=TRUE, 
                                                         type=10))
                        if(grubbsTest$p.value < alphaCutoff & 
                               !is.null(names(grubbsTest$p.value))) {
                            if (grepl("lowest", tolower(grubbsTest$alternative))) {
                                outlierDirection <- 
                                    data.frame(LowLocalOutlier=TRUE, 
                                               HighLocalOutlier=FALSE, 
                                               RTS_ID=names(grubbsTest$p.value))
   
                            } else {
                                outlierDirection <- 
                                    data.frame(LowLocalOutlier=FALSE, 
                                               HighLocalOutlier=TRUE, 
                                               RTS_ID=names(grubbsTest$p.value))
                            }
                            return(outlierDirection)
                        } else {
                            return(NA)
                        }
                    })
                    names(currResult) <- colnames(currExprs)
                    currResult <- currResult[!is.na(currResult)]
                    appendedResult <-
                        lapply(names(currResult), function(q) {
                            toAppendResult <- currResult[[q]]
                            toAppendResult[["Sample_ID"]] <- q
                            return(toAppendResult)
                        })
                    ifelse(length(appendedResult) < 1, 
                           return(), 
                           return(do.call(rbind, appendedResult)))
                })
            targetOutliers <- 
                targetOutliers[!targetOutliers %in% list(NULL)]
            if(length(targetOutliers) > 0) {
                targetOutliers <- do.call(rbind, targetOutliers)
                return(targetOutliers)
            } else {
                return()
            }
        })
    
    featureData(object)[["OutlierFrequency"]] <- 0
    globalFlags <- data.frame(GlobalGrubbsOutlier=rep(FALSE, dim(object)[1L]),
                              row.names=featureNames(object))
    localGrubbsFlags <- 
        data.frame(matrix(nrow=dim(object)[1L], 
                          ncol=dim(object)[2L], 
                          dimnames=list(featureNames(object), sampleNames(object))),
                          check.names=FALSE)
    
    grubbsResults <- grubbsResults[!grubbsResults %in% list(NULL)]
    if(length(grubbsResults) > 0) {
        grubbsResults <- do.call(rbind, grubbsResults)
        
        outlierFreqs <- table(grubbsResults[["RTS_ID"]]) / dim(object)[2L]
        fData(object)[names(outlierFreqs), "OutlierFrequency"] <- outlierFreqs
        globalFlags[["GlobalGrubbsOutlier"]] <- 
            100 * fData(object)[["OutlierFrequency"]] >= percFail
       
        subsetOfLocals <- 
            lapply(unique(grubbsResults[["RTS_ID"]]), function(currOut) {
                currFlags <- localGrubbsFlags[currOut, , drop=FALSE]
                lowAOIs <- 
                    grubbsResults[(grubbsResults[["RTS_ID"]] == currOut & 
                                       grubbsResults[["LowLocalOutlier"]]), 
                                  "Sample_ID"]
                highAOIs <- 
                     grubbsResults[(grubbsResults[["RTS_ID"]] == currOut & 
                                       grubbsResults[["HighLocalOutlier"]]), 
                                   "Sample_ID"]
                if (length(lowAOIs) > 0) {currFlags[, lowAOIs] <- 
                    rep(TRUE, length(lowAOIs))}
                if (length(highAOIs) > 0) {currFlags[, highAOIs] <- 
                    rep(TRUE, length(highAOIs))}
                return(currFlags)
        })
        subsetOfLocals <- do.call(rbind, subsetOfLocals)
        localGrubbsFlags[rownames(subsetOfLocals), 
                         colnames(subsetOfLocals)] <- subsetOfLocals
        localGrubbsFlags <- 
            localGrubbsFlags[featureNames(object), sampleNames(object)]
    }
    localGrubbsFlags[is.na(localGrubbsFlags)] <- FALSE
    LocalGrubbsOutlier <- 
        data.frame(LocalGrubbsOutlier=localGrubbsFlags, check.names=FALSE)
    object <- appendFeatureFlags(object, globalFlags)
    object <- appendFeatureFlags(object, LocalGrubbsOutlier)
    return(object)
}

changeLocalsToNA <- function(object) {
    localColumns <- grepl("LocalGrubbs", colnames(fData(object)[["QCFlags"]]))
    if (sum(localColumns) > 0L) {
        assayDataElement(object, elt="preLocalRemoval") <- exprs(object)
        exprs(object)[fData(object)[["QCFlags"]][, localColumns] == TRUE] <- NA
    } else {
        warning("Local outlier test not performed yet. ",
                "No change in local outlier values performed.")
    }
    return(object)
}

checkCutoffs <- function(qcCutoffs) {
    if (suppressWarnings(!all(lapply(qcCutoffs, is.numeric)))) {
        stop("qcCutoffs must be numeric values")
    }
    if (!all(names(DEFAULTS) %in% names(qcCutoffs))) {
        qcCutoffs <- append(qcCutoffs, 
            DEFAULTS[!(names(DEFAULTS) %in% names(qcCutoffs))])
    }
    return(qcCutoffs)
}

appendSampleFlags <- function(object, currFlags) {
    currQCName <- colnames(currFlags)
    if ("QCFlags" %in% varLabels(protocolData(object))) {
        if (currQCName %in% colnames(protocolData(object)[["QCFlags"]])) {
            protocolData(object)[["QCFlags"]] <- 
                protocolData(object)[["QCFlags"]][, 
                    !colnames(protocolData(object)[["QCFlags"]]) %in% currQCName]
        }
        protocolData(object)[["QCFlags"]] <- 
            cbind(protocolData(object)[["QCFlags"]], currFlags)
    } else {
        protocolData(object)[["QCFlags"]] <- currFlags
    }
    return(object)
}

appendFeatureFlags <- function(object, currFlags) {
    currQCName <- colnames(currFlags)
    if ("QCFlags" %in% varLabels(featureData(object))) {
        if (any(currQCName %in% colnames(featureData(object)[["QCFlags"]]))) {
            featureData(object)[["QCFlags"]] <- 
                featureData(object)[["QCFlags"]][, 
                    !colnames(featureData(object)[["QCFlags"]]) %in% currQCName]
        }
        featureData(object)[["QCFlags"]] <- 
            cbind(featureData(object)[["QCFlags"]], currFlags) 
    } else {
        featureData(object)[["QCFlags"]] <- currFlags
    }
    return(object)
}

############Not used##########################################################
#' Add QC flags to feature and protocol data simultaneously
#' 
#' @param object name of the object class to perform QC on
#' \enumerate{
#'     \item{NanoStringGeoMxSet, use the NanoStringGeoMxSet class}
#' }
#' @param qcCutoffs list of cutoffs and thresholds to use for QC
#' @param ... optional parameters to pass
#' 
#' @return the object that QC was performed on
#' 
#' @examples
#' datadir <- system.file("extdata", "DSP_NGS_Example_Data",
#'                        package="GeomxTools")
#' demoData <- readRDS(file.path(datadir, "/demoData.rds"))
#' setQCFlags(demoData[,1:10])
#' 
#' @export
setMethod("setQCFlags",
    signature(object="NanoStringGeoMxSet"),
    function(object, qcCutoffs=DEFAULTS, ...) {
        qcCutoffs <- checkCutoffs(qcCutoffs)
        object <- setSeqQCFlags(object=object, qcCutoffs=qcCutoffs)
        object <- setBackgroundQCFlags(object=object, qcCutoffs=qcCutoffs)
        object <- setGeoMxQCFlags(object=object, qcCutoffs=qcCutoffs)
        if (featureType(object) == "Probe") {
            object <- setBioProbeQCFlags(object=object, qcCutoffs=qcCutoffs)
        } else if (featureType(object) == "Target") {
        #   object <- setTargetFlags(object=object, qcCutoffs=qcCutoffs)
        }
        return(object)
})

removeFlagProbes <- function(object, removeFlagCols=NULL) {
    
}

#NEO make sure that when collapsed count occurs feature data QCFlags is removed
setTargetFlags <- function(object, qcCutoffs=DEFAULTS) {
    if(analtye(object) == "RNA"){
      object <- 
        setLOQFlags(object, cutoff=qcCutoffs[["loqCutoff"]])
    }  
    object <- 
        setHighCountFlags(object=object, cutoff=qcCutoffs[["highCountCutoff"]])
    return(object)
}

setHighCountFlags <- function(object, cutoff=DEFAULTS[["highCountCutoff"]]) {
    cutoff <- checkCutoffs(cutoff)
    return(object)
}

setLOQFlags <- function(object, cutoff=DEFAULTS[["loqCutoff"]]) {
        if (featureType(object) == "Target") {
            negativeObject <- negativeControlSubset(object)
            LOQs <- esApply(negativeObject, MARGIN=2, FUN=function(x) {
                ngeoMean(x) * ngeoSD(x) ^ cutoff})
            LOQFlags <- esApply(object, MARGIN=1, FUN=function(x) {
                x > LOQs})
            object <- appendFeatureFlags(object, LOQFlags)
        } else {
            warning(paste("Incorrect feature type.",
                "Feature type should be Target."))
        }
        return(object)
}

setProbeCountFlags <- function(object, cutoff=DEFAULTS[["minProbeCount"]]) {
        probeCountFlags <- apply(assayDataElement(object, elt="exprs"), 
            MARGIN=1, FUN=function(x, minCount){
                all(x < minCount)
            }, minCount=cutoff)
        probeCountFlags <- data.frame("LowProbeCount"=probeCountFlags)
        object <- appendFeatureFlags(object, probeCountFlags)
        return(object)
}
Nanostring-Biostats/GeomxTools documentation built on Sept. 24, 2024, 4:51 p.m.