R/treeRearrangement.R

Defines functions oneOf4 kSPR rSPR dn rNNI nni nnin

Documented in nni rNNI rSPR

nnin <- function(tree, n) {
  attr(tree, "order") <- NULL
  tree1 <- tree
  tree2 <- tree
  edge <- matrix(tree$edge, ncol = 2)
  parent <- edge[, 1]
  child <- tree$edge[, 2]
  k <- min(parent) - 1
  ind <- which(child > k)[n]
  if (is.na(ind)) return(NULL)
  p1 <- parent[ind]
  p2 <- child[ind]
  ind1 <- which(parent == p1)
  ind1 <- ind1[ind1 != ind][1]
  ind2 <- which(parent == p2)
  e1 <- child[ind1]
  e2 <- child[ind2[1]]
  e3 <- child[ind2[2]]
  tree1$edge[ind1, 2] <- e2
  tree1$edge[ind2[1], 2] <- e1
  tree2$edge[ind1, 2] <- e3
  tree2$edge[ind2[2], 2] <- e1
  if (!is.null(tree$edge.length)) {
    tree1$edge.length[c(ind1, ind2[1])] <- tree$edge.length[c(ind2[1], ind1)]
    tree2$edge.length[c(ind1, ind2[2])] <- tree$edge.length[c(ind2[2], ind1)]
  }
  tree1 <- reorder(tree1, "postorder")
  tree2 <- reorder(tree2, "postorder")
  result <- list(tree1, tree2)
  result
}


## @aliases nni rNNI rSPR
#' Tree rearrangements.
#'
#' \code{nni} returns a list of all trees which are one nearest neighbor
#' interchange away. \code{rNNI} and \code{rSPR} are two methods which simulate
#' random trees which are a specified number of rearrangement apart from the
#' input tree. Both methods assume that the input tree is bifurcating. These
#' methods may be useful in simulation studies.
#'
#'
#' @param tree A phylogenetic \code{tree}, object of class \code{phylo}.
#' @param moves Number of tree rearrangements to be transformed on a tree.  Can
#' be a vector
#' @param n Number of trees to be simulated.
#' @param k If defined just SPR of distance k are performed.
#' @return an object of class multiPhylo.
#' @author Klaus Schliep \email{klaus.schliep@@gmail.com}
#' @seealso \code{\link{allTrees}}, \code{\link{SPR.dist}}
#' @keywords cluster
#' @examples
#'
#' tree <- rtree(20, rooted = FALSE)
#' trees1 <- nni(tree)
#' trees2 <- rSPR(tree, 2, 10)
#'
#' @rdname nni
#' @export nni
nni <- function(tree) {
  tip.label <- tree$tip.label
  attr(tree, "order") <- NULL
  k <- min(tree$edge[, 1]) - 1
  n <- sum(tree$edge[, 2] > k)
  result <- vector("list", 2 * n)
  l <- 1
  for (i in 1:n) {
    tmp <- nnin(tree, i)
    tmp[[1]]$tip.label <- tmp[[2]]$tip.label <- NULL
    result[c(l, l + 1)] <- tmp
    l <- l + 2
  }
  attr(result, "TipLabel") <- tip.label
  class(result) <- "multiPhylo"
  result
}


#' @rdname nni
#' @export
rNNI <- function(tree, moves = 1, n = length(moves)) {
  k <- length(na.omit(match(tree$edge[, 2], tree$edge[, 1])))

  k_nni <- function(tree, ch, pvector, moves = 1L) {
    if(length(edges)>1) p2_sample <- sample(edges, moves, replace=TRUE)
    else p2_sample <- rep(edges, moves)
    r2_sample <- sample(2, moves, replace=TRUE)
    for (i in seq_len(moves)) {
      p2 <- p2_sample[i]
      p1 <- pvector[p2]
      ind1 <- ch[[p1]]
      v1 <- ind1[ind1 != p2][1]
      ind2 <- ch[[p2]]
      r2 <- r2_sample[i]
      v2 <- ind2[r2]
      ind1[ind1 == v1] <- v2
      ind2[r2] <- v1
      pvector[v1] <- p2
      pvector[v2] <- p1
      ch[[p1]] <- ind1
      ch[[p2]] <- ind2
    }
    edge[, 1] <- pvector[child]
    neworder <- reorderRcpp(edge, nb.tip, nb.tip + 1L, 2L)
    tree$edge <- edge[neworder, ]
    if (!is.null(tree$edge.length)) {
      tree$edge.length <- tree$edge.length[neworder]
    }
    attr(tree, "order") <- "postorder"
    tree
  }
  edge    <- tree$edge
  parent  <- edge[, 1]
  child   <- edge[, 2]
  nb.tip  <- Ntip(tree)
  if (nb.tip < (4L - is.rooted(tree))) stop("Not enough edges for NNI rearrangements")
  pvector <- integer(max(edge))
  pvector[child] <- parent
  ch <- Children(tree)
  edges <- child[child %in% parent]
  if (n == 1) {
    trees <- tree
    if (moves > 0) {
      trees <- k_nni(tree, ch, pvector, moves = moves)
    }
    trees$tip.label <- tree$tip.label
  }
  else {
    trees <- vector("list", n)
    tip.label <- tree$tip.label
    tree$tip.label <- NULL
    if (length(moves) == 1) moves <- rep(moves, n)
    for (j in seq_len(n)) {
      tmp <- tree
      if (moves[j] > 0) {
        tmp <- k_nni(tree, ch, pvector, moves = moves[j])
      }
      tmp$tip.label <- NULL
      trees[[j]] <- tmp
    }
    attr(trees, "TipLabel") <- tip.label
    class(trees) <- "multiPhylo"
  }
  trees
}


####  SPR  ####

dn <- function(x) {
  #  if (!is.binary(x) ) x <- multi2di(x, random = FALSE)
  if (is.null(x$edge.length)) x$edge.length <- rep(1, nrow(x$edge))
  else x$edge.length[] <- 1
  dist.nodes(x)
}


#' @rdname nni
#' @export
rSPR <- function(tree, moves = 1, n = length(moves), k = NULL) {
  if (n == 1) {
    trees <- tree
    for (i in 1:moves) trees <- kSPR(trees, k = k)
  }
  else {
    trees <- vector("list", n)
    if (length(moves) == 1) moves <- rep(moves, n)

    for (j in 1:n) {
      tmp <- tree
      if (moves[j] > 0) {
        for (i in 1:moves[j]) tmp <- kSPR(tmp, k = k)
      }
      tmp$tip.label <- NULL
      trees[[j]] <- tmp
    }
    attr(trees, "TipLabel") <- tree$tip.label
    class(trees) <- "multiPhylo"
  }
  trees
}


kSPR <- function(tree, k = NULL) {
  if (Ntip(tree) < (4L - is.rooted(tree))) return(tree)
  l <- length(tree$tip.label)
  root <- getRoot(tree)
  distN <- dn(tree)[-c(1:l), -c(1:l)]
  distN[upper.tri(distN)] <- Inf
  dN <- distN[lower.tri(distN)]
  tab <- tabulate(dN)
  tab[1] <- tab[1] * 2
  tab[-1] <- tab[-1] * 8
  if (is.null(k)) k <- seq_along(tab)
  k <- na.omit( (seq_along(tab))[k])
  if (length(k) > 1) k <- sample(seq_along(tab)[k], 1,
                                 prob = tab[k] / sum(tab[k]))
  if (k == 1) return(rNNI(tree, 1, 1))
  index <- which(distN == k, arr.ind = TRUE) + l
  m <- dim(index)[1]
  if (m == 0) stop("k is chosen too big")
  ind <- index[sample(m, 1), ]
  s1 <- sample(c(1, 2), 1)
  if (s1 == 1) res <- oneOf4(tree, ind[1], ind[2], sample(c(1, 2), 1),
      sample(c(1, 2), 1), root)
  if (s1 == 2) res <- oneOf4(tree, ind[2], ind[1], sample(c(1, 2), 1),
      sample(c(1, 2), 1), root)
  res
}


oneOf4 <- function(tree, ind1, ind2, from = 1, to = 1, root) {
  if (!is.binary(tree))
    stop("trees must be binary")
  tree <- reroot(tree, ind2, FALSE)
  kids1 <- Children(tree, ind1)
  anc <- Ancestors(tree, ind1, "all")
  l <- length(anc)
  kids2 <- Children(tree, ind2)
  kids2 <- kids2[kids2 != anc[l - 1]]

  child <- tree$edge[, 2]
  tmp <- numeric(max(tree$edge))
  tmp[child] <- seq_along(child)

  edge <- tree$edge
  edge[tmp[kids1[-from]], 1] <- Ancestors(tree, ind1, "parent")
  edge[tmp[kids2[to]], 1] <- ind1
  edge[tmp[ind1]] <- ind2

  tree$edge <- edge
  attr(tree, "order") <- NULL
  tree <- reroot(tree, root, FALSE)
  tree
}
KlausVigo/phangorn documentation built on Nov. 5, 2024, 11 a.m.