R/pmlPen.R

Defines functions optWPen pmlMixPen pmlPartPen pmlPen

Documented in pmlPen

#' @rdname phangorn-internal
#' @export
pmlPen <- function(object, lambda, ...) {
  if (inherits(object, "pmlPart")) return(pmlPartPen(object, lambda, ...))
  if (inherits(object, "pmlMix")) return(pmlMixPen(object, lambda, ...))
  else stop("object has to be of class pmlPart or pmlMix")
}


pmlPartPen <- function(object, lambda, control = pml.control(epsilon = 1e-8,
                         maxit = 20, trace = 1), ...) {
  fits <- object$fits
  m <- length(fits)
  K <- -diag(length(fits[[1]]$tree$edge.length))
  Ktmp <- K
  for (i in 1:(m - 1)) Ktmp <- cbind(Ktmp, K)
  KM <- Ktmp
  for (i in 1:(m - 1)) KM <- rbind(KM, Ktmp)
  diag(KM) <- m - 1
  theta <- NULL
  l <- length(fits[[1]]$tree$edge.length)
  loglik <- 0
  for (i in 1:m) {
    theta <- c(theta, fits[[i]]$tree$edge.length)
    loglik <- loglik + fits[[i]]$logLik
  }
  #    print(loglik)
  pen <- -0.5 * lambda * t(theta) %*% KM %*% theta
  loglik <- loglik - 0.5 * lambda * t(theta) %*% KM %*% theta
  eps <- 1
  H <- matrix(0, m * l, m * l)
  iter <- 0
  trace <- control$trace
  while (abs(eps) > control$eps & iter < control$maxit) {
    theta <- NULL
    sc <- NULL
    for (i in 1:m) {
      theta <- c(theta, fits[[i]]$tree$edge.length)
      scoretmp <- score(fits[[i]], TRUE)
      sc <- c(sc, scoretmp$sc)
      H[(1:l) + l * (i - 1), (1:l) + l * (i - 1)] <- scoretmp$F
    }
    sc <- sc - lambda * KM %*% log(theta)
    thetanew <- log(theta) +  solve(H + lambda * KM, sc)
    for (i in 1:m) fits[[i]]$tree$edge.length <- exp(thetanew[(1:l) + (i - 1) * l])
    for (i in 1:m) fits[[i]] <- update.pml(fits[[i]], tree = fits[[i]]$tree)
    loglik1 <- 0
    for (i in 1:m) loglik1 <- loglik1 + fits[[i]]$logLik
    logLik <- loglik1
    if (trace > 0) print(loglik1)
    loglik0 <- loglik1
    pen <- -0.5 * lambda * t(theta) %*% KM %*% theta
    loglik1 <- loglik1 - 0.5 * lambda * t(thetanew) %*% KM %*% thetanew
    eps <-  (loglik - loglik1) / loglik1
    loglik <- loglik1
    theta <- exp(thetanew)
    iter <- iter + 1
    if (trace > 0) print(iter)
  }
  df <- sum(diag(solve(H + lambda * KM, H)))

  object$df[1, 1] <- df
  object$df[1, 2] <- 1
  object$fits <- fits
  object$logLik <- loglik0
  attr(object$logLik, "df") <- sum(object$df[, 1] * object$df[, 2])
  object$logLik.pen <- loglik
  attr(object$logLik.pen, "df") <- sum(object$df[, 1] * object$df[, 2])
  object
}


pmlMixPen <- function(object, lambda, optOmega = TRUE,
                      control = pml.control(epsilon = 1e-8, maxit = 20,
                                            trace = 1), ...){
  fits <- object$fits
  m <- length(fits)
  K <- -diag(length(fits[[1]]$tree$edge.length))
  tree <- fits[[1]]$tree
  Ktmp <- K
  for (i in 1:(m - 1)) Ktmp <- cbind(Ktmp, K)
  KM <- Ktmp
  for (i in 1:(m - 1)) KM <- rbind(KM, Ktmp)
  diag(KM) <- m - 1
  theta <- NULL
  l <- length(fits[[1]]$tree$edge.length)
  omega <- object$omega
  dat <- fits[[1]]$data
  nr <- attr(dat, "nr")
  weight <- drop(attr(dat, "weight"))
  ll <- matrix(0, nr, m)
  for (i in 1:m) ll[, i] <- fits[[i]]$lv
  lv <- drop(ll %*% omega)
  loglik <- sum(weight * log(lv))
  for (i in 1:m) theta <- c(theta, fits[[i]]$tree$edge.length)
  pen <- -0.5 * lambda * t(theta) %*% KM %*% theta
  loglik <- loglik + pen
  print(loglik)
  eps0 <- 1
  dl <- matrix(0, nr, m * l)
  iter0 <- 0
  trace <- control$trace
  while (abs(eps0) > control$eps & iter0 < control$maxit) {
    eps <- 1
    iter <- 0
    while (abs(eps) > 0.01 & iter < 5) {
      for (i in 1:m) {
        dl[, (1:l) + l * (i - 1)] <- dl(fits[[i]], TRUE) * omega[i]
      }
      dl <- dl / lv
      sc <- colSums(weight * dl) - lambda * KM %*% log(theta)
      H <- crossprod(dl * weight, dl)
      thetanew <- log(theta) + solve(H + lambda * KM, sc)
      for (i in 1:m) fits[[i]]$tree$edge.length <- exp(thetanew[(1:l) +
          (i - 1) * l])
      for (i in 1:m) {
        tree$edge.length <- exp(thetanew[(1:l) + (i - 1) * l])
        fits[[i]] <- update.pml(fits[[i]], tree = tree)
        ll[, i] <- fits[[i]]$lv
      }
      lv <- drop(ll %*% omega)
      loglik1 <- sum(weight * log(lv))
      pen <-  -0.5 * lambda * t(thetanew) %*% KM %*% thetanew
      loglik1 <- loglik1 + pen
      eps <- abs(loglik1 - loglik)
      theta <- exp(thetanew)
      loglik <- loglik1
      iter <- iter + 1
    }
    if (optOmega) {
      res <- optWPen(ll, weight, omega, pen)
      omega <- res$p
      for (i in 1:m) {
        pl0 <- ll[, -i, drop = FALSE] %*% omega[-i]
        fits[[i]] <- update(fits[[i]], llMix = pl0, wMix = omega[i])
      }
    }
    lv <- drop(ll %*% omega)
    loglik1 <- sum(weight * log(lv))
    loglik0 <- loglik1
    loglik1 <- loglik1 - 0.5 * lambda * t(thetanew) %*% KM %*% thetanew
    eps0 <- (loglik - loglik1) / loglik1
    theta <- exp(thetanew)
    loglik <- loglik1
    iter0 <- iter0 + 1
    if (trace > 0) print(loglik)
  }

  for (i in 1:m) {
    pl0 <- ll[, -i, drop = FALSE] %*% omega[-i]
    fits[[i]] <- update(fits[[i]], llMix = pl0, wMix = omega[i])
  }
  df <- sum(diag(solve(H + lambda * KM, H)))
  penalty <- list(lambda = lambda, K = KM, thetanew = thetanew,
                  ploglik = loglik)
  object$omega <- omega
  object$df[1, 1] <- df
  object$df[1, 2] <- 1
  object$fits <- fits
  object$logLik <- loglik0
  object$penalty <- penalty
  object
}


optWPen <- function(ll, weight, omega, pen, ...) {
  k <- length(omega)
  nenner <- 1 / omega[1]
  eta <- log(omega * nenner)
  eta <- eta[-1]
  fn <- function(eta, ll, weight, pen) {
    eta <- c(0, eta)
    p <- exp(eta) / sum(exp(eta))
    res <- sum(weight * log(ll %*% p)) + pen
    res
  }
  if (k == 2)
    res <- optimize(f = fn, interval = c(-3, 3), lower = -3, upper = 3,
      maximum = TRUE, tol = .Machine$double.eps^0.25,
      ll = ll, weight = weight, pen = pen)
  else res <- optim(eta, fn = fn, method = "L-BFGS-B", lower = -5,
      upper = 5, control = list(fnscale = -1, maxit = 25),
      gr = NULL, ll = ll, weight = weight, pen = pen)
  p <- exp(c(0, res[[1]]))
  p <- p / sum(p)
  result <- list(par = p, value = res[[2]])
  result
}
KlausVigo/phangorn documentation built on Nov. 5, 2024, 11 a.m.