Nothing
# =====functional gene analysis====
{
COG_desc <- data.frame(
Category = c(
"INFORMATION STORAGE AND PROCESSING", "INFORMATION STORAGE AND PROCESSING", "INFORMATION STORAGE AND PROCESSING", "INFORMATION STORAGE AND PROCESSING", "INFORMATION STORAGE AND PROCESSING",
"CELLULAR PROCESSES AND SIGNALING", "CELLULAR PROCESSES AND SIGNALING", "CELLULAR PROCESSES AND SIGNALING", "CELLULAR PROCESSES AND SIGNALING", "CELLULAR PROCESSES AND SIGNALING",
"CELLULAR PROCESSES AND SIGNALING", "CELLULAR PROCESSES AND SIGNALING", "CELLULAR PROCESSES AND SIGNALING", "CELLULAR PROCESSES AND SIGNALING", "CELLULAR PROCESSES AND SIGNALING",
"CELLULAR PROCESSES AND SIGNALING", "METABOLISM", "METABOLISM", "METABOLISM", "METABOLISM", "METABOLISM", "METABOLISM", "METABOLISM", "METABOLISM",
"POORLY CHARACTERIZED", "POORLY CHARACTERIZED"
),
Code = c("J", "A", "K", "L", "B", "D", "Y", "V", "T", "M", "N", "Z", "W", "U", "O", "X", "C", "G", "E", "F", "H", "I", "P", "Q", "R", "S"),
Description = c(
"Translation, ribosomal structure and biogenesis", "RNA processing and modification", "Transcription", "Replication, recombination and repair", "Chromatin structure and dynamics",
"Cell cycle control, cell division, chromosome partitioning", "Nuclear structure", "Defense mechanisms", "Signal transduction mechanisms", "Cell wall/membrane/envelope biogenesis",
"Cell motility", "Cytoskeleton", "Extracellular structures", "Intracellular trafficking, secretion, and vesicular transport", "Posttranslational modification, protein turnover, chaperones",
"Mobilome: prophages, transposons", "Energy production and conversion", "Carbohydrate transport and metabolism", "Amino acid transport and metabolism", "Nucleotide transport and metabolism",
"Coenzyme transport and metabolism", "Lipid transport and metabolism", "Inorganic ion transport and metabolism", "Secondary metabolites biosynthesis, transport and catabolism",
"General function prediction only", "Function unknown"
),
stringsAsFactors = FALSE
)
}
update_ec_info <- function() {
lib_ps("readxl", library = FALSE)
ec_node <- readxl::read_excel("~/Documents/R/pctax/element-cycling.xlsx", sheet = 2) %>%
arrange_all() %>%
as.data.frame()
ec_link <- readxl::read_excel("~/Documents/R/pctax/element-cycling.xlsx", sheet = 3) %>%
arrange_all() %>%
as.data.frame()
ec_gene <- readxl::read_excel("~/Documents/R/pctax/element-cycling.xlsx", sheet = 1) %>%
arrange_all() %>%
as.data.frame()
ec_path <- readxl::read_excel("~/Documents/R/pctax/element-cycling.xlsx", sheet = 4) %>%
arrange_all() %>%
as.data.frame()
all_ec_info <- list(ec_node = ec_node, ec_link = ec_link, ec_gene = ec_gene, ec_path = ec_path)
save(all_ec_info, file = "~/Documents/R/pctax/pctax/data/all_ec_info.rda")
}
#' Plot element cycle
#'
#' @param cycle one of c("Carbon cycle","Nitrogen cycle","Phosphorus cycle","Sulfur cycle","Iron cycle")
#' @param anno_df anno_df, columns should contains Gene or KO and Group
#' @param only_anno only show genes in anno_df?
#' @param cell_fill cell fill color
#' @param cell_color cell border color
#' @param chemical_size chemical text size
#' @param chemical_bold chemical text bold
#' @param chemical_color chemical text color
#' @param chemical_label chemical text in geom_label or geom_text?
#' @param reaction_width reaction line width
#' @param reaction_arrow_size reaction arrow size
#' @param reaction_arrow_closed reaction arrow closed?
#' @param gene_or_ko "gene" or "ko"
#' @param gene_size gene text size
#' @param gene_x_offset gene_x_offset
#' @param gene_y_offset gene_y_offset
#' @param gene_label gene text in geom_label or geom_text?
#' @param gene_color gene text color
#' @param gene_bold gene text blod?
#' @param gene_italic gene text italic?
#' @param gene_label_fill gene label fill color
#'
#' @return ggplot
#' @export
#'
#' @examples
#' if (requireNamespace("ggforce")) plot_element_cycle()
plot_element_cycle <- function(cycle = "Nitrogen cycle", anno_df = NULL, only_anno = FALSE, cell_fill = NA, cell_color = "orange",
chemical_size = 7, chemical_bold = TRUE, chemical_color = "black", chemical_label = TRUE,
reaction_width = 1, reaction_arrow_size = 4, reaction_arrow_closed = TRUE,
gene_or_ko = "gene", gene_size = 3, gene_x_offset = 0.3, gene_y_offset = 0.15,
gene_label = TRUE, gene_color = NULL, gene_bold = TRUE, gene_italic = TRUE, gene_label_fill = "white") {
all_ec_info <- Type <- x1 <- x2 <- y1 <- y2 <- X <- Y <- Label <- X1 <- Y1 <- X2 <- Y2 <- Sub_type <- Pathway <- Gene <- Group <- x <- y <- NULL
if (file.exists("~/Documents/R/pctax/data/all_ec_info.rda")) {
load("~/Documents/R/pctax/data/all_ec_info.rda", envir = environment())
} else {
data("all_ec_info", package = "pctax", envir = environment())
}
ec_node <- all_ec_info$ec_node
ec_link <- all_ec_info$ec_link
ec_gene <- all_ec_info$ec_gene
ec_path <- all_ec_info$ec_path
ec_node2 <- ec_node %>% filter(Type == cycle)
ec_node2$Label <- gsub("\\\\", "", ec_node2$Label)
ec_link2 <- ec_link %>% filter(Type == cycle)
ec_link2$nudge[is.na(ec_link2$nudge)] <- "0"
ec_link2$curvature[is.na(ec_link2$curvature)] <- 0
ec_gene2 <- ec_gene %>% filter(Type == cycle)
if (gene_or_ko == "ko") ec_gene2$Gene <- ec_gene2$KO
if (!is.null(anno_df)) {
if (only_anno) {
ec_gene2 <- right_join(ec_gene2, anno_df)
} else {
ec_gene2 <- left_join(ec_gene2, anno_df)
}
}
# 0.plot cell
p <- ggplot()
cells <- tibble::tribble(
~Type, ~x1, ~x2, ~y1, ~y2,
"Carbon cycle", -2.7, 2.7, -2.3, 2.3,
"Nitrogen cycle", -2.3, 4, -2.3, 2.2,
"Phosphorus cycle", -2.7, 2.7, -1.5, 2,
"Sulfur cycle", -2.7, 2.7, -2.3, 2.3,
"Iron cycle", -2.7, 2.7, -1.2, 1.2
) %>%
as.data.frame() %>%
column_to_rownames("Type")
if (cycle %in% rownames(cells)) {
# lib_ps("ggchicklet", library = FALSE)
# p <- p + ggchicklet::geom_rrect(
# data = cells[cycle, ], aes(xmin = x1, xmax = x2, ymin = y1, ymax = y2),
# fill = cell_fill, color = cell_color, size = 2, radius = unit(1, "cm")
# )
lib_ps("ggforce", library = FALSE)
cell_shape <- data.frame(
x = c(cells[cycle, ]$x1, cells[cycle, ]$x2, cells[cycle, ]$x2, cells[cycle, ]$x1),
y = c(cells[cycle, ]$y1, cells[cycle, ]$y1, cells[cycle, ]$y2, cells[cycle, ]$y2)
)
p <- p + ggforce::geom_shape(
data = cell_shape, aes(x = x, y = y),
fill = cell_fill, color = cell_color, size = 2, radius = unit(1, "cm")
)
}
# 1.plot chemicals
if (chemical_bold) ec_node2$Label <- paste0("bold(", ec_node2$Label, ")")
if (chemical_label) {
p1 <- p +
geom_label(
data = ec_node2,
aes(x = X, y = Y, label = paste(Label)), size = chemical_size, color = chemical_color, parse = TRUE
)
} else {
p1 <- p +
geom_text(
data = ec_node2,
aes(x = X, y = Y, label = paste(Label)), size = chemical_size, color = chemical_color, parse = TRUE
)
}
# 2.plot reactions
p2 <- p1
for (i in seq_len(nrow(ec_link2))) {
p2 <- p2 + geom_curve(aes(x = X1, y = Y1, xend = X2, yend = Y2, color = Sub_type),
linewidth = reaction_width,
data = ec_link2[i, ], curvature = ec_link2[i, "curvature", drop = TRUE],
arrow = arrow(length = unit(reaction_arrow_size, "mm"), type = ifelse(reaction_arrow_closed, "closed", "open"))
)
}
# 3.plot genes
for (i in unique(ec_gene2$Pathway)) {
if (!i %in% ec_path$Pathway) next
ec_gene2[which(ec_gene2$Pathway == i), c("X", "Y")] <- pcutils::generate_labels(ec_gene2 %>% filter(Pathway == i) %>% pull(Gene),
input = unlist(ec_path[which(ec_path$Pathway == i), c("X", "Y")]),
x_offset = gene_x_offset, y_offset = gene_y_offset
)
}
if (gene_bold & gene_italic) {
ec_gene2$Gene <- paste0("bolditalic(", ec_gene2$Gene, ")")
} else if (gene_italic) {
ec_gene2$Gene <- paste0("italic(", ec_gene2$Gene, ")")
} else if (gene_bold) ec_gene2$Gene <- paste0("bold(", ec_gene2$Gene, ")")
if (!is.null(gene_color)) {
gene_color_param <- list(color = gene_color)
} else {
gene_color_param <- list()
}
if (!is.null(anno_df)) {
p3 <- p2 + do.call(geom_label, pcutils::update_param(list(
data = ec_gene2,
mapping = aes(x = X, y = Y, label = Gene, color = Sub_type, fill = Group), size = gene_size, parse = TRUE
), gene_color_param))
if (!is.numeric(anno_df$Group)) p3 <- p3 + scale_fill_discrete(na.value = "white")
} else {
if (gene_label) {
p3 <- p2 + do.call(geom_label, pcutils::update_param(list(
data = ec_gene2,
mapping = aes(x = X, y = Y, label = Gene, color = Sub_type),
fill = gene_label_fill, size = gene_size, parse = TRUE, show.legend = FALSE
), gene_color_param))
} else {
p3 <- p2 + do.call(geom_text, pcutils::update_param(list(
data = ec_gene2,
mapping = aes(x = X, y = Y, label = Gene, color = Sub_type),
size = gene_size, parse = TRUE, show.legend = FALSE
), gene_color_param))
}
}
# 4.final plot
lims <- tibble::tribble(
~Type, ~x1, ~x2, ~y1, ~y2,
"Carbon cycle", -2.8, 2.8, -2.5, 2.5,
"Nitrogen cycle", -2.5, 4, -3, 2.6,
"Phosphorus cycle", -2.8, 2.8, -2.5, 2.5,
"Sulfur cycle", -2.8, 2.8, -2.5, 2.5,
"Iron cycle", -2.8, 2.8, -2.5, 2
) %>%
as.data.frame() %>%
column_to_rownames("Type")
p4 <- p3 + coord_fixed() +
xlim(lims[cycle, 1], lims[cycle, 2]) + ylim(lims[cycle, 3], lims[cycle, 4]) +
scale_color_manual(values = pcutils::get_cols(length(unique(ec_link2$Sub_type)), "col3")) +
pctax_theme + labs(x = NULL, y = NULL) +
theme(
legend.position = "right", panel.grid.minor = element_blank(),
panel.grid.major = element_blank(), axis.line = element_blank(),
axis.ticks = element_blank(), axis.text = element_blank()
)
message("recommend ggsave(width = 12,height = 10)")
p4
}
# Nitrogen states
#' Load N-cycle data
#'
#' @return list
#' @export
#'
#' @references
#' Tu, Q., Lin, L., Cheng, L., Deng, Y. & He, Z. (2019) NCycDB: a curated integrative database for fast and accurate metagenomic profiling of nitrogen cycling genes. Bioinformatics 35, 1040–1048.
#' Kuypers, M. M. M., Marchant, H. K. & Kartal, B. (2018) The microbial nitrogen-cycling network. Nat Rev Microbiol 16, 263–276.
load_N_data <- function() {
Pathway <- Pathway2 <- X <- Y <- up_down <- Y1 <- Y2 <- NULL
N_df <- data.frame(
X = c((+5):(-3), -3), Y = c(rep(1, 9), 3),
`oxidation state` = c("+5", "+4", "+3", "+2", "+1", "0", "-1", "-2", "-3", "-3"),
N = c("NO3-", NA, "NO2-", "NO", "N2O", "N2", "NH2OH", "N2H4", "NH4+", "organic_N"),
N_name = c("paste(NO[3]^'-')", NA, "NO[2]^'-'", "NO", "paste(N[2],O)", "N[2]", "paste(NH[2],OH)", "paste(N[2],H[4])", "NH[4]^'+'", "organic_N"),
check.names = FALSE
)
# Pathways
N_path1 <- tibble::tribble(
~from, ~to, ~Pathway, ~Pathway2, ~curvature, ~up_down,
"NO3-", "NO2-", "Denitrification", "Denitrification1", 1L, "down",
"NO3-", "NO2-", "ANRA", "ANRA1", 7L, "up",
"NO3-", "NO2-", "DNRA", "DNRA1", 6L, "up",
"NO2-", "NO3-", "Nitrification", "Nitrification3", 1L, "up",
"NO2-", "NO", "Denitrification", "Denitrification2", 1L, "down",
"NO2-", "NH4+", "ANRA", "ANRA2", 3L, "up",
"NO2-", "NH4+", "DNRA", "DNRA2", 2L, "up",
"NO", "N2O", "Denitrification", "Denitrification3", 1L, "down",
"NO", "co-N", "Anammox", "Anammox1", 8L, "down",
"N2O", "N2", "Denitrification", "Denitrification4", 1L, "down",
"N2", "NH4+", "N-fixation", "N-fixation", 1L, "down",
"N2H4", "N2", "Anammox", "Anammox2", 4L, "down",
"NH2OH", "NO2-", "Nitrification", "Nitrification2", 1L, "up",
"NH4+", "NH2OH", "Nitrification", "Nitrification1", 1L, "up",
"NH4+", "co-N", "Anammox", "Anammox1", 5L, "down",
"NH4+", "organic_N", "Organic-synthesis", "Organic-synthesis", 0L, "down",
"organic_N", "NO2-", "Organic-degradation", "Organic-degradation1", 4L, "down",
"organic_N", "NH4+", "Organic-degradation", "Organic-degradation", 0L, "down",
"co-N", "N2H4", "Anammox", "Anammox1", 0L, "down"
) %>% as.data.frame()
# Nitrogen metabolism related genes
{
N_genes <- tibble::tribble(
~Pathway2, ~`Gene_families`, ~X, ~Y,
"Nitrification1", "amoA_A", -1.5, 0.8,
"Nitrification1", "amoB_A", -2, 0.7,
"Nitrification1", "amoC_A", -2.5, 0.8,
"Nitrification1", "amoA_B", -1.5, 0.6,
"Nitrification1", "amoB_B", -2, 0.5,
"Nitrification1", "amoC_B", -2.5, 0.6,
"Nitrification2", "hao", 1, 0.4,
"Nitrification3", "nxrA", 4.2, 0.8,
"Nitrification3", "nxrB", 3.8, 0.8,
"Denitrification1", "napA", 4.4, 1.9,
"Denitrification1", "napB", 4, 1.9,
"Denitrification1", "napC", 3.6, 1.9,
"Denitrification1", "narG", 4.4, 1.7,
"Denitrification1", "narH", 4, 1.7,
"Denitrification1", "narJ", 3.6, 1.7,
"Denitrification1", "narI", 4.4, 1.5,
"Denitrification1", "narZ", 4, 1.5,
"Denitrification1", "narY", 3.6, 1.5,
"Denitrification1", "narV", 4.2, 1.3,
"Denitrification1", "narW", 3.8, 1.3,
"Denitrification2", "nirK", 2.7, 1.3,
"Denitrification2", "nirS", 2.3, 1.3,
"Denitrification3", "norB", 1.65, 1.3,
"Denitrification3", "norC", 1.3, 1.3,
"Denitrification4", "nosZ", 0.5, 1.3,
"ANRA1", "nasA", 4.4, -0.55,
"ANRA1", "nasB", 4, -0.55,
"ANRA1", "NR", 3.7, -0.55,
"ANRA1", "narB", 4.2, -0.75,
"ANRA1", "narC", 3.8, -0.75,
"ANRA2", "nirA", 0, -0.8,
"DNRA1", "napA", 4.4, 0.4,
"DNRA1", "napB", 4, 0.4,
"DNRA1", "napC", 3.6, 0.4,
"DNRA1", "narG", 4.3, 0.2,
"DNRA1", "narH", 4, 0.2,
"DNRA1", "narJ", 3.72, 0.2,
"DNRA1", "narI", 4.3, 0,
"DNRA1", "narZ", 4, 0,
"DNRA1", "narY", 3.72, 0,
"DNRA1", "narV", 4.2, -0.2,
"DNRA1", "narW", 3.8, -0.2,
"DNRA2", "nirB", 0.3, -0.1,
"DNRA2", "nirD", 0, -0.1,
"DNRA2", "nrfA", -0.3, -0.1,
"DNRA2", "nrfB", 0.3, -0.3,
"DNRA2", "nrfC", 0, -0.3,
"DNRA2", "nrfD", -0.3, -0.3,
"N-fixation", "anfG", -1.2, 1.6,
"N-fixation", "nifD", -1.55, 1.6,
"N-fixation", "nifH", -1.85, 1.6,
"N-fixation", "nifK", -1.4, 1.4,
"N-fixation", "nifW", -1.7, 1.4,
"Anammox1", "hzsA", -0.8, 2.25,
"Anammox1", "hzsB", -1.2, 2.25,
"Anammox1", "hzsC", -0.8, 2,
"Anammox2", "hdh", -1.2, 1.2,
"Anammox2", "hzo", -0.9, 1.2,
"Organic-synthesis", "glsA", -3.3, 2.8,
"Organic-synthesis", "glnA", -3.7, 2.8,
"Organic-synthesis", "asnB", -3.3, 2.65,
"Organic-synthesis", "ansB", -3.7, 2.65,
"Organic-synthesis", "gs_K00264", -3.45, 2.5,
"Organic-synthesis", "gs_K00265", -3.45, 2.35,
"Organic-synthesis", "gs_K00266", -3.45, 2.2,
"Organic-synthesis", "gs_K00284", -3.45, 2.05,
"Organic-degradation1", "nao", 1.35, 2,
"Organic-degradation1", "nmo", 1, 2.1,
"Organic-degradation", "ureA", -3.25, 1.75,
"Organic-degradation", "ureB", -3.55, 1.75,
"Organic-degradation", "ureC", -3.88, 1.75,
"Organic-degradation", "gdh_K00260", -3.5, 1.6,
"Organic-degradation", "gdh_K00261", -3.5, 1.45,
"Organic-degradation", "gdh_K00262", -3.5, 1.3,
"Organic-degradation", "gdh_K15371", -3.5, 1.15
)
N_genes <- dplyr::left_join(N_genes, N_path1 %>% dplyr::distinct(Pathway, Pathway2))
}
N_path1 %>%
dplyr::left_join(., rbind(N_df, list(-2, 2, NA, "co-N", NA))[, c("N", "X", "Y")], by = c("from" = "N")) %>%
dplyr::rename(X1 = X, Y1 = Y) %>%
dplyr::left_join(., rbind(N_df, list(-2, 2, NA, "co-N", NA))[, c("N", "X", "Y")], by = c("to" = "N")) %>%
dplyr::rename(X2 = X, Y2 = Y) -> N_path
N_path %>%
dplyr::mutate(Y1 = ifelse(up_down == "down", Y1 + 0.1, ifelse(up_down == "up", Y1 - 0.1, Y1))) %>%
dplyr::mutate(Y2 = ifelse(up_down == "down", Y2 + 0.1, ifelse(up_down == "up", Y2 - 0.1, Y2))) -> N_path
N_path[which(N_path$to == "organic_N"), c("X2", "Y2")] <- c(-3.1, 2.9)
N_path[which(N_path$from == "organic_N"), c("X1", "Y1")] <- rep(c(-2.9, 2.9), each = 2)
return(list(N_path = N_path, N_genes = N_genes, N_df = N_df))
}
#' Plot the N-cycling pathway and genes
#'
#' @param my_N_genes dataframe, "Gene_families","type" should in colnames of my_N_genes
#' @param just_diff logical, just plot the different genes?
#' @param path_col colors of pathways
#' @param type_col colors of types
#' @param fill_alpha alpha, default 0.5
#' @param arrow_size arrow_size, default 0.1
#' @param line_width line_width, default 1
#' @param title title, default "Nitrogen cycling"
#' @param legend.position default c(0.85,0.15)
#'
#' @return ggplot
#' @export
#'
#' @examples
#' N_data <- load_N_data()
#' my_N_genes <- data.frame(
#' `Gene_families` = sample(N_data$N_genes$Gene_families, 10, replace = FALSE),
#' change = rnorm(10), check.names = FALSE
#' )
#' my_N_genes <- dplyr::mutate(my_N_genes,
#' type = ifelse(change > 0, "up", ifelse(change < 0, "down", "none"))
#' )
#' plot_N_cycle(my_N_genes, just_diff = FALSE, fill_alpha = 0.2)
#' # ggsave(filename = "test.pdf", width = 14, height = 10)
plot_N_cycle <- function(my_N_genes = NULL, just_diff = FALSE, path_col = NULL, type_col = c(up = "red", down = "blue", none = NA), fill_alpha = 0.5,
arrow_size = 0.1, line_width = 1, title = "Nitrogen cycling", legend.position = c(0.85, 0.15)) {
if (!is.null(my_N_genes)) if (!all(c("Gene_families", "type") %in% colnames(my_N_genes))) stop('"Gene_families","type" should in colnames of my_N_genes')
X1 <- Y1 <- X2 <- Y2 <- Pathway <- curvature <- X <- Y <- N_name <- Gene_families <- type <- x <- y <- label <- NULL
N_data <- load_N_data()
N_path <- N_data$N_path
N_genes <- N_data$N_genes
N_df <- N_data$N_df
if (is.null(path_col)) {
path_col <- c(
"Denitrification" = "#EB443E", "DNRA" = "#A6830F", "Anammox" = "#62CB68", "ANRA" = "#8AC0DD", "N-fixation" = "#F2DF4E",
"Organic-degradation" = "#F5AB80", "Organic-synthesis" = "#8B71DD", "Nitrification" = "#3C57AA"
)
}
p1 <- ggplot() +
geom_curve(aes(x = X1, y = Y1, xend = X2, yend = Y2, color = Pathway),
linewidth = line_width,
data = filter(N_path, curvature == 0), curvature = 0, arrow = arrow(length = unit(arrow_size, "inches"), type = "closed")
) +
geom_curve(aes(x = X1, y = Y1, xend = X2, yend = Y2, color = Pathway),
linewidth = line_width,
data = filter(N_path, curvature == 1), curvature = -0.3, arrow = arrow(length = unit(arrow_size, "inches"), type = "closed")
) +
geom_curve(aes(x = X1, y = Y1 - 0.1, xend = X2, yend = Y2 - 0.1, color = Pathway),
linewidth = line_width,
data = filter(N_path, curvature == 2), curvature = 0.45, arrow = arrow(length = unit(arrow_size, "inches"), type = "closed")
) +
geom_curve(aes(x = X1, y = Y1 - 0.15, xend = X2, yend = Y2 - 0.15, color = Pathway),
linewidth = line_width,
data = filter(N_path, curvature == 3), curvature = 0.6, arrow = arrow(length = unit(arrow_size, "inches"), type = "closed")
) +
geom_curve(aes(x = X1, y = Y1 - 0.1, xend = X2, yend = Y2 - 0.1, color = Pathway),
linewidth = line_width,
data = filter(N_path, curvature == 6), curvature = 0.8, arrow = arrow(length = unit(arrow_size, "inches"), type = "closed")
) +
geom_curve(aes(x = X1, y = Y1 - 0.15, xend = X2, yend = Y2 - 0.15, color = Pathway),
linewidth = line_width,
data = filter(N_path, curvature == 7), curvature = 1.3, arrow = arrow(length = unit(arrow_size, "inches"), type = "closed")
) +
geom_curve(aes(x = X1, y = Y1, xend = X2, yend = Y2, color = Pathway),
linewidth = line_width,
data = filter(N_path, curvature == 4), curvature = 0.2, arrow = arrow(length = unit(arrow_size, "inches"), type = "closed")
) +
geom_curve(aes(x = X1, y = Y1, xend = X2, yend = Y2, color = Pathway),
linewidth = line_width,
data = filter(N_path, curvature == 5), curvature = 0.2
) +
geom_curve(aes(x = X1, y = Y1, xend = X2, yend = Y2, color = Pathway),
linewidth = line_width,
data = filter(N_path, curvature == 8), curvature = -0.2
) +
scale_color_manual(name = "Pathway", values = path_col, guide = guide_legend(nrow = 4)) +
ylim(-2, 3.5) +
pctax_theme +
scale_x_reverse(breaks = (+5):(-3), labels = c(N_df$`oxidation state`[1:9]))
p2 <- p1 + geom_text(aes(x = X, y = Y, label = paste("bold(", N_name, ")")), data = N_df, parse = TRUE, size = 5) +
labs(x = "Oxidation state", y = NULL) +
theme(
legend.position = "right", panel.grid.minor = element_blank(),
panel.grid.major = element_blank(), axis.line.y = element_blank(),
axis.ticks.y = element_blank(), axis.text.y = element_blank()
)
message("recommend ggsave(width = 14,height = 10)")
if (is.null(my_N_genes)) {
p3 <- p2 + geom_text(aes(x = X, y = Y, label = `Gene_families`, color = Pathway), data = N_genes, show.legend = FALSE)
} else {
if (!just_diff) {
my_N_genes_change <- dplyr::left_join(N_genes, my_N_genes)
} else {
my_N_genes_change <- dplyr::left_join(my_N_genes, N_genes)
}
p3 <- p2 + ggnewscale::new_scale_color() +
geom_label(aes(x = X, y = Y, label = `Gene_families`, color = Pathway, fill = type), alpha = fill_alpha, data = my_N_genes_change) +
scale_color_manual(values = path_col, guide = guide_none())
if (!is.numeric(my_N_genes_change %>% pull(type))) {
p3 <- p3 + scale_fill_manual(values = type_col, na.value = NA, guide = guide_legend(direction = "horizontal"))
} else {
p3 <- p3 + scale_fill_gradient(low = "white", high = "red", na.value = NA, guide = guide_colorbar(direction = "horizontal"))
}
}
p3 + coord_fixed(ratio = 1.02) +
geom_text(
data = data.frame(x = 4, y = 3.5, label = title),
mapping = aes(x = x, y = y, label = label),
size = 10, fontface = 2, inherit.aes = FALSE
) +
theme(
legend.position = legend.position, legend.text = element_text(face = "bold"),
legend.title = element_text(face = "bold")
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.