R/caprese.algorithm.R

Defines functions verify.parents get.tree.scores remove.caprese.loops get.tree.parents caprese.fit

#### TRONCO: a tool for TRanslational ONCOlogy
####
#### Copyright (c) 2015-2017, Marco Antoniotti, Giulio Caravagna, Luca De Sano,
#### Alex Graudenzi, Giancarlo Mauri, Bud Mishra and Daniele Ramazzotti.
####
#### All rights reserved. This program and the accompanying materials
#### are made available under the terms of the GNU GPL v3.0
#### which accompanies this distribution.


# reconstruct the best tree-like topology
# @title caprese.fit
# @param dataset a dataset describing a progressive phenomenon
# @param lambda shrinkage parameter (value in [0,1])
# @param silent execute the algorithm in silent mode
# @param epos error rate of false positive errors
# @param eneg error rate of false negative errors
# @param hypotheses hypotheses to be considered in the reconstruction. This should be NA for this algorithms. 
# @return topology: the reconstructed tree-like topology
#
caprese.fit <- function(dataset,
                        lambda = 0.5,
                        silent = FALSE,
                        epos = 0.0,
                        eneg = 0.0,
                        hypotheses = NA) {
    
    ## Start the clock to measure the execution time.
    
    ptm <- proc.time();
    
    ## Structure with the set of valid edges.
    ## I start from the complete graph, i.e., I have no prior and all
    ## the connections are possibly causal.
    
    adj.matrix = array(1, c(ncol(dataset), ncol(dataset)));
    colnames(adj.matrix) = colnames(dataset);
    rownames(adj.matrix) = colnames(dataset);
    
    ## The diagonal of the adjacency matrix should not be considered,
    ## i.e., no self cause is allowed.
    
    diag(adj.matrix) = 0;

    ## Consider any hypothesis.
    
    adj.matrix = hypothesis.adj.matrix(hypotheses, adj.matrix);
    
    ## Check if the dataset is valid.
    
    valid.dataset = check.dataset(dataset,adj.matrix,FALSE, epos, eneg)
    adj.matrix = valid.dataset$adj.matrix
    
    ## marginal.probs is an array of the observed marginal
    ## probabilities.
    
    marginal.probs <- valid.dataset$marginal.probs;
    
    ## joint.probs is an array of the observed joint probabilities.
    
    joint.probs <- valid.dataset$joint.probs;
    
    ## Reconstruct the causal topology.
    
    best.parents =
        get.tree.parents(adj.matrix,
                         marginal.probs,
                         joint.probs,
                         lambda)
    
    ## Create the structures where to save the results.
    
    parents.pos <-
        best.parents$parents;
    conditional.probs <-
        array(-1, dim = c(length(parents.pos), 1));
    adj.matrix <-
        array(0, dim = c(length(parents.pos), length(parents.pos)));
    colnames(adj.matrix) = colnames(dataset);
    rownames(adj.matrix) = colnames(dataset);
    
    confidence <- array(list(), c(3, 1));
    confidence[[1, 1]] =
        array(0, dim = c(length(parents.pos), length(parents.pos)));
    confidence[[2, 1]] =
        best.parents$pr.score;
    confidence[[3, 1]] =
        array(0, dim = c(length(parents.pos), length(parents.pos)));
    
    ## Set the parents names and the structures.
    
    hypergeometric.pvalues = vector();
    
    for (i in 1:ncol(dataset)) {
        
        ## If the node has a parent.
        
        if (parents.pos[i, 1] != -1) {

            ## Note: [i,j] = 1 means that i is causing j.

            adj.matrix[parents.pos[i, 1], i] = 1;
            
            ## Compute the conditional probability of
            ## P(CHILD=1|PARENT=1)
            
            conditional.probs[i, 1] =
                best.parents$joint.probs[parents.pos[i, 1], i] /
                    best.parents$marginal.probs[parents.pos[i]];
        } else {
            
            ## If the node has no parent, its conditional probability
            ## is set to 1.
            
            conditional.probs[i, 1] = 1;
        }

        ## Compute the hypergeometric test.
        
        for (j in i:ncol(dataset)) {
            if (i != j) {
                
                ## Confidence in temporal priority.
                
                confidence[[1, 1]][i, j] =
                    min(best.parents$marginal.probs[i] /
                            best.parents$marginal.probs[j],
                        1);
                confidence[[1, 1]][j, i] =
                    min(best.parents$marginal.probs[j] /
                            best.parents$marginal.probs[i],
                        1);
                
                ## Compute the confidence by hypergeometric test
                
                confidence[[3, 1]][i, j] =
                    phyper(best.parents$joint.probs[i, j] * nrow(dataset),
                           best.parents$marginal.probs[i] * nrow(dataset),
                           nrow(dataset) -
                               best.parents$marginal.probs[i] *
                                   nrow(dataset),
                           best.parents$marginal.probs[j] *
                               nrow(dataset),
                           lower.tail = FALSE);
                
                confidence[[3, 1]][j, i] = confidence[[3, 1]][i, j];
                
                ## Save all the valid pvalues.
                
                hypergeometric.pvalues =
                    append(hypergeometric.pvalues,
                           confidence[[2, 1]][i, j]);
            }
        }
    }
    
    estimated.error.rates = list(error.fp = NA, error.fn = NA)
    estimated.probabilities = list(marginal.probs = NA, 
                                   joint.probs = NA,
                                   conditional.probs = NA)
    error.rates = estimated.error.rates
    estimated.probabilities.fit = estimated.probabilities
    
    ## Structures where to save the results.
    
    model = list();
    adj.matrix.fit = list();
    adj.matrix.fit$adj.matrix.fit = adj.matrix;
    
    probabilities.observed =
        list(marginal.probs = marginal.probs,
             joint.probs = joint.probs,
             conditional.probs = conditional.probs);
    
    probabilities.fit =
        list(estimated.marginal.probs = estimated.probabilities.fit$marginal.probs,
             estimated.joint.probs = estimated.probabilities.fit$joint.probs,
             estimated.conditional.probs = estimated.probabilities.fit$conditional.probs);

    probabilities =
        list(probabilities.observed = probabilities.observed,
             probabilities.fit = probabilities.fit);
    
    ## Save the results for the model
    
    model[["caprese"]] =
        list(probabilities = probabilities,
             parents.pos = parents.pos,
             error.rates = error.rates,
             adj.matrix = adj.matrix.fit);
    
    ## Set the execution parameters.
    
    parameters =
        list(algorithm = "CAPRESE",
             lambda = lambda,
             silent = silent,
             error.rates = list(epos=epos,eneg=eneg))
    
    ## Return the results.
    
    topology =
        list(dataset = dataset,
             hypotheses = hypotheses,
             confidence = confidence,
             model = model,
             parameters = parameters,
             execution.time = (proc.time() - ptm))

    topology = rename.reconstruction.fields(topology, dataset)
    return(topology)
}


# select at the most one parent for each node based on the probability raising criteria
# @title get.tree.parents
# @param adj.matrix adjacency matrix of the valid edges
# @param marginal.probs observed marginal probabilities
# @param joint.probs observed joint probabilities
# @param lambda shrinkage parameter (value between 0 and 1)
# @return best.parents list of the best parents
#
get.tree.parents <- function(adj.matrix,
                             marginal.probs,
                             joint.probs,
                             lambda) {
    
    ## Compute the scores for each edge.
    
    scores =
        get.tree.scores(adj.matrix,
                        marginal.probs,
                        joint.probs,
                        lambda); 
    pr.score = scores$pr.score;
    
    ## Set to -1 the scores where there is no causation according to
    ## Suppes' condition [i,j] means i is causing j.
    
    for (i in 1:ncol(pr.score)) {
        for (j in i:ncol(pr.score)) {
            
            ## The diagonal has not to be considered (no self-cause)
            
            if (i == j) {
                pr.score[i, j] = -1;
            } else {
                ## Otherwise, apply Suppes's criteria for prima facie
                ## cause.
                
                ## If both the scores are not greater then 0, they are
                ## not valid in this case the events are causally
                ## irrelevant, i.e., independent.
                
                if (pr.score[i, j] <= 0 && pr.score[j, i] <= 0) {
                    pr.score[i, j] = -1;
                    pr.score[j, i] = -1;
                }
                ## If at least one score is greater then 0, I keep the
                ## greater one; in this way I give a (time) direction
                ## to the progression.  Furthermore, this constrain
                ## the topology to be acyclic by construction.
                
                else {
                    if (pr.score[i, j] > pr.score[j, i]) {
                        pr.score[j, i] = -1;
                    } else {
                        pr.score[i, j] = -1;
                    }
                }
            }
        }
    }
    
    ## Chose at the most one parent per node.
    ## Here I suppose that each node has a parent spurious causes are
    ## considered (and removed) later.
    
    best.parents = array(-1, dim = c(ncol(pr.score), 1));
    for (i in 1:ncol(pr.score)) {
        
        ## -1 means that the best parent is the Root
        
        curr.best = -1;
        
        ## Find the best parent for the current node.
        
        best = which.max(pr.score[,i]);
        if (pr.score[best,i]>0) {
            curr.best = best;
        }
        ## Set the best parent for the current node.
        
        best.parents[i,1] = curr.best;
    }
    
    # remove any loop in the reconstruction
    caprese.adj.matrix = array(0,c(nrow(best.parents),nrow(best.parents)))
    list.of.arcs = list()
    list.of.scores = NULL
    for(nodes in 1:nrow(best.parents)) {
        if(best.parents[nodes,1]!=-1) {
            caprese.adj.matrix[best.parents[nodes,1],nodes] = 1
            list.of.arcs[[(length(list.of.arcs)+1)]] = list(parent=best.parents[nodes,1],child=nodes)
            list.of.scores = c(list.of.scores,pr.score[best.parents[nodes,1],nodes])
        }
    }
    best.parents = remove.caprese.loops(best.parents,caprese.adj.matrix,list.of.arcs,list.of.scores)
    
    ## Check for spurious causes by the independent progression filter
    ## and complete the parents list.
    
    parents =
        verify.parents(best.parents,
                       marginal.probs,
                       joint.probs);
    
    ## Save the results
    best.parents =
        list(parents = parents,
             marginal.probs = marginal.probs,
             joint.probs = joint.probs,
             pr.score = scores$pr.score);
    return(best.parents);
}


remove.caprese.loops <- function( best.parents, adj.matrix, edges, scores ) {
    
    # if I have at least one edge
    if(length(edges)>0) {
        
        ordered.scores = sort(scores,decreasing=FALSE,index.return=TRUE)
        ordered.edges = edges[ordered.scores$ix]
        
        # go through the edges in decreasing order of confidence
        for (i in 1:length(edges)) {
            
            # consider any edge i --> j
            curr.edge = ordered.edges[[i]]
            curr.edge.i = as.numeric(curr.edge$parent)
            curr.edge.j = as.numeric(curr.edge$child)
            
            # search for loops between curr.edge.i and curr.edge.j
            curr.graph = graph.adjacency(adj.matrix,mode="directed")
            is.path = suppressWarnings(get.shortest.paths(curr.graph,
                                       curr.edge.j,
                                       curr.edge.i)$vpath)
            is.path = length(unlist(is.path))

            # if there is a path between the two nodes, remove edge i --> j
            if (is.path > 0) {
                adj.matrix[curr.edge.i,curr.edge.j] = 0
                best.parents[curr.edge.j,1] = -1
            }
            
        }
        
    }
    
    return(best.parents)
    
}


# compute the probability raising based scores
# @title get.tree.scores
# @param adj.matrix adjacency matrix of the valid edges
# @param marginal.probs observed marginal probabilities
# @param joint.probs observed joint probabilities
# @param lambda shrinkage parameter (value between 0 and 1)
# @return scores: probability raising based scores
#
get.tree.scores <- function(adj.matrix,
                            marginal.probs,
                            joint.probs,
                            lambda) {
    
    ## Structure where to save the probability raising scores.
    
    pr.score =
        array(-1, dim = c(nrow(marginal.probs), nrow(marginal.probs)))
    
    ## Compute the probability raising based scores.
    
    for (i in 1:ncol(pr.score)) {
        for (j in 1:ncol(pr.score)) {
            
            ## If the edge is valid.
            
            if (adj.matrix[i, j] == 1) {
                
                ## alpha is the probability raising model of causation
                ## (raw model estimate).
                
                alpha =
                    ((joint.probs[i, j] / marginal.probs[i]) -
                         ((marginal.probs[j] - joint.probs[i, j]) /
                              (1 - marginal.probs[i]))) /
                                  ((joint.probs[i,j] /
                                        marginal.probs[i]) +
                                            ((marginal.probs[j] - joint.probs[i,j]) /
                                                 (1 - marginal.probs[i])));
                
                ## beta is the correction factor (based on time
                ## distance in terms of statistical dependence).
                
                beta =
                    (joint.probs[i, j] -
                         marginal.probs[i] * marginal.probs[j]) /
                        (joint.probs[i, j] + marginal.probs[i] * marginal.probs[j]);
                
                ## The overall estimator is a shrinkage-like
                ## combination of alpha and beta.
                
                ## The scores are saved in the convention used for an
                ## ajacency matrix, i.e. [i, j] means causal edge
                ## i-->j.
                
                pr.score[i, j] = (1 - lambda) * alpha + lambda * beta;
            }
        }
    }
    scores =
        list(marginal.probs = marginal.probs,
             joint.probs = joint.probs,
             pr.score = pr.score);
    return(scores);
}


# verify the independent progression filter
# @title verify.parents
# @param best.parents best edges to be verified
# @param marginal.probs observed marginal probabilities
# @param joint.probs observed joint probabilities
# @return best.parents: list of the best valid parents
#
verify.parents <- function(best.parents, marginal.probs, joint.probs) {
    
    ## Verify the condition for the best parent of each node.
    
    for (i in 1:length(best.parents)) {
        
        ## If there is a connection, i.e. the node is not already
        ## attached to the Root.
        
        if (best.parents[i] != -1) {
            
            ## Score for the root as the parent of this node.
            
            w.root.node = 1 / (1 + marginal.probs[i]);
            
            ## Compute the scores for the edges to all the other
            ## upstream nodes.
            
            attach.to.root = 1;
            for (j in 1:length(marginal.probs)) {
                
                ## If the connection is valid and the parent node has
                ## greater probability, i.e. it is before the child in
                ## temporal order.
                
                if (i != j && marginal.probs[j] > marginal.probs[i]) {
                    w.parent.node =
                        (marginal.probs[j] / (marginal.probs[i] + marginal.probs[j])) *
                            (joint.probs[i, j] / (marginal.probs[i] * marginal.probs[j]));
                    
                    ## The parent is valid if this condition is valid
                    ## at least one time (i.e. for at least one of the
                    ## upstream nodes), meaning that if we find out
                    ## that a connection is not spurious for any node,
                    ## the best parent is not spurious as well.
                    
                    if (w.root.node <= w.parent.node) {
                        attach.to.root = 0;
                        break;
                    }
                }
            }
            
            ## Connect the node to the Root if the flag is true.
            
            if (attach.to.root==1) {
                best.parents[i] = -1;
            }
        }
    }
    return(best.parents);
}


#### end of file -- caprese.algorithm.R

Try the TRONCO package in your browser

Any scripts or data that you put into this service are public.

TRONCO documentation built on Nov. 8, 2020, 5:51 p.m.