Description Usage Arguments Value Author(s) Examples
plot a barplot of LOLA enrichment results
1 2 3 4 5 6 7 8 9 10 11 12 13 |
lolaDb |
LOLA DB object as returned by |
lolaRes |
LOLA enrichment result as returned by the |
scoreCol |
column name in |
orderCol |
column name in |
signifCol |
column name of the significance score in |
includedCollections |
vector of collection names to be included in the plot. If empty (default), all collections are used |
pvalCut |
p-value cutoff to be employed for filtering the results |
maxTerms |
maximum number of items to be included in the plot |
colorpanel |
colors to be used for coloring the bars according to "target" (see |
groupByCollection |
facet the plot by collection |
orderDecreasing |
flag indicating whether the value in |
ggplot object containing the plot
Fabian Mueller
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | library(RnBeads.hg19)
data(small.example.object)
logger.start(fname=NA)
# compute differential methylation
dm <- rnb.execute.computeDiffMeth(rnb.set.example,pheno.cols=c("Sample_Group","Treatment"))
# download LOLA DB
lolaDest <- tempfile()
dir.create(lolaDest)
lolaDirs <- downloadLolaDbs(lolaDest, dbs="LOLACore")
# perform enrichment analysis
res <- performLolaEnrichment.diffMeth(rnb.set.example,dm,lolaDirs[["hg19"]])
# select the 500 most hypermethylated tiling regions in ESCs compared to iPSCs
# in the example dataset
lolaRes <- res$region[["hESC vs. hiPSC (based on Sample_Group)"]][["tiling"]]
lolaRes <- lolaRes[lolaRes$userSet=="rankCut_500_hyper",]
# plot
lolaBarPlot(res$lolaDb, lolaRes, scoreCol="oddsRatio", orderCol="maxRnk", pvalCut=0.05)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.