#!/usr/bin/Rscript
### SIAMCAT - Statistical Inference of Associations between
### Microbial Communities And host phenoTypes R flavor EMBL
### Heidelberg 2012-2018 GNU GPL 3.0
#' @title Model Interpretation Plot
#'
#' @description This function produces a plot for model interpretation
#'
#' @usage model.interpretation.plot(siamcat, fn.plot = NULL,
#' color.scheme = "BrBG", consens.thres = 0.5, heatmap.type = "zscore",
#' limits = c(-3, 3), log.n0 = 1e-06, max.show = 50, prompt=TRUE,
#' verbose = 1)
#'
#' @param siamcat object of class \link{siamcat-class}
#'
#' @param fn.plot string, filename for the pdf-plot
#'
#' @param color.scheme color scheme for the heatmap, defaults to \code{'BrBG'}
#'
#' @param consens.thres float, minimal ratio of models incorporating a feature
#' in order to include it into the heatmap, defaults to \code{0.5}
#' \strong{Note that for \code{'randomForest'} models, this cutoff specifies the
#' minimum median Gini coefficient for a feature to be included and
#' should therefore be much lower, e.g. \code{0.01}}
#'
#' @param heatmap.type string, type of the heatmap, can be either \code{'fc'}
#' or \code{'zscore'}, defaults to \code{'zscore'}
#'
#' @param limits vector, cutoff for extreme values in the heatmap,
#' defaults to \code{c(-3, 3)}
#'
#' @param log.n0 float, pseudocount to be added before log-transformation
#' of features, defaults to \code{1e-06}
#'
#' @param max.show integer, maximum number of features to be shown in the model
#' interpretation plot, defaults to 50
#'
#' @param prompt boolean, turn on/off prompting user input when not plotting
#' into a pdf-file, defaults to TRUE
#'
#' @param verbose control output: \code{0} for no output at all, \code{1}
#' for only information about progress and success, \code{2} for normal
#' level of information and \code{3} for full debug information,
#' defaults to \code{1}
#'
#' @keywords SIAMCAT model.interpretation.plot
#'
#' @return Does not return anything, but produces the model interpretation plot.
#'
#' @export
#'
#' @encoding UTF-8
#'
#' @details Produces a plot consisting of \itemize{
#' \item a barplot showing the feature weights and their robustness (i.e. in
#' what proportion of models have they been incorporated)
#' \item a heatmap showing the z-scores of the metagenomic features across
#' samples
#' \item another heatmap displaying the metadata categories (if applicable)
#' \item a boxplot displaying the poportion of weight per model that is
#' actually shown for the features that are incorporated into more than
#' \code{consens.thres} percent of the models.
#' }
#'
#' @examples
#' data(siamcat_example)
#'
#' # simple working example
#' siamcat_example <- train.model(siamcat_example, method='lasso')
#' model.interpretation.plot(siamcat_example, fn.plot='./interpretion.pdf',
#' heatmap.type='zscore')
model.interpretation.plot <-
function(siamcat,
fn.plot=NULL,
color.scheme = "BrBG",
consens.thres = 0.5,
heatmap.type = "zscore",
limits = c(-3, 3),
log.n0 = 1e-06,
max.show = 50,
prompt=TRUE,
verbose = 1) {
if (verbose > 1)
message("+ starting model.interpretation.plot")
s.time <- proc.time()[3]
# ######################################################################
# general checks
stopifnot(length(heatmap.type) == 1)
stopifnot(heatmap.type %in% c('zscore', 'fc', 'log'))
if (is.null(model_list(siamcat, verbose=0))){
stop("SIAMCAT object does not contain any models. Exiting...")
}
if (is.null(pred_matrix(siamcat, verbose=0))){
stop("SIAMCAT object does not contain any predictions. Exiting...")
}
if (heatmap.type %in% c('fc', 'log')){
if (any(orig_feat(siamcat) < 0) |
any(colSums(orig_feat(siamcat)) > 1.01)){
stop("Original data should be compositional for ",
"heatmap.type `fc` or `log`. Exiting...")
}
}
label <- label(siamcat)
if (heatmap.type == 'fc' & label$type == "CONTINUOUS"){
stop("Regression-type model cannot be combined with fold-change ",
"heatmap! Exiting...")
}
model.type <- model_type(siamcat)
if (model.type=='SVM'){
stop("Interpretation heatmap not possible for kernel SVMs!")
}
feature.type <- feature_type(siamcat)
feature.weights <- feature_weights(siamcat)
weight.matrix <- weight_matrix(siamcat)
# ######################################################################
# check fn.plot
if (is.null(fn.plot)) {
msg <- paste0('### ATTENTION: Not plotting to a pdf-file.\n',
'### The plot is optimized for landscape DIN-A4 (or similar) ',
'layout.\n### Please make sure that your plotting region is',
' large enough!!!\n### Use at your own risk...')
message(msg)
if (prompt == TRUE){
continue <- askYesNo('Are you sure that you want to continue?',
default = TRUE,
prompts = getOption("askYesNo",
gettext(c("Yes", "No", "Cancel"))))
} else {
continue <- TRUE
}
if (!continue || is.na(continue)){
opt <- options(show.error.messages = FALSE)
on.exit(options(opt))
stop('Exiting...')
}
par.old <- par(no.readonly=TRUE)
}
# ######################################################################
# some color pre-processing
if (verbose > 2)
message("+++ preprocessing color scheme")
if (!color.scheme %in% row.names(brewer.pal.info)) {
warning(
"Not a valid RColorBrewer palette name, defaulting to BrBG...\n
See brewer.pal.info for more information about
RColorBrewer palettes."
)
color.scheme <- "BrBG"
}
if (brewer.pal.info[color.scheme, 'category'] == 'seq'){
color.scheme <- colorRampPalette(
brewer.pal(brewer.pal.info[color.scheme, "maxcolors"],
color.scheme))(100)
} else {
color.scheme <-
rev(colorRampPalette(
brewer.pal(brewer.pal.info[color.scheme, "maxcolors"],
color.scheme))(100))
}
#browser()
# ######################################################################
# preprocess models
if (verbose > 2)
message("+++ preprocessing models")
sel.idx <-
model.interpretation.select.features(
feature.weights = feature.weights,
model.type = model.type,
consens.thres = consens.thres,
label = label,
max.show = max.show,
verbose = verbose
)
num.sel.f <- length(sel.idx)
# ######################################################################
# aggregate predictions and sort
# patients by score aggregate predictions of several models if more than
# one is given
mean.agg.pred <- rowMeans(pred_matrix(siamcat))
# idx to sort samples according to their class membership and prediction
# score
if (label$type=='BINARY'){
srt.idx <-
sort(label$label + mean.agg.pred, index.return = TRUE)$ix
} else if (label$type=='CONTINUOUS'){
srt.idx <- sort(label$label, index.return=TRUE)$ix
}
# ######################################################################
# prepare heatmap
if (verbose > 2)
message("+++ preparing heatmap")
if (heatmap.type == "zscore") {
if (feature.type == 'original'){
feat <- get.orig_feat.matrix(siamcat)
} else if (feature.type == 'filtered') {
feat <- get.filt_feat.matrix(siamcat)
} else if (feature.type == 'normalized') {
feat <- get.norm_feat.matrix(siamcat)
}
img.data <- model.interpretation.prepare.heatmap.zscore(
heatmap.data = feat[sel.idx, srt.idx],
limits = limits,
verbose = verbose)
} else if (heatmap.type == "fc") {
feat <- get.orig_feat.matrix(siamcat)
if (is.null(log.n0)) {
warning(
"Pseudo-count before log-transformation
not supplied! Estimating it as 5% percentile..."
)
log.n0 <- quantile(feat[feat != 0], 0.05)
}
img.data <- model.interpretation.prepare.heatmap.fc(
heatmap.data = feat[, srt.idx],
sel.feat = names(sel.idx),
limits = limits,
meta = meta(siamcat),
label = label,
log.n0 = log.n0,
verbose = verbose)
} else if (heatmap.type == 'log') {
feat <- get.orig_feat.matrix(siamcat)
if (is.null(log.n0)) {
warning(
"Pseudo-count before log-transformation
not supplied! Estimating it as 5% percentile..."
)
log.n0 <- quantile(feat[feat != 0], 0.05)
}
img.data <- model.interpretation.prepare.heatmap.log(
heatmap.data = feat[names(sel.idx), srt.idx],
log.n0 = log.n0,
verbose = verbose)
limits[1] <- log10(log.n0)
limits[2] <- 0
} else {
stop("! unknown heatmap.type: ", heatmap.type)
}
# ######################################################################
# start plotting model properties
if (verbose > 2)
message("+++ plotting model properties")
if (!is.null(fn.plot)) {
pdf(fn.plot, paper = "special", height = 8.27, width = 11.69,
onefile = TRUE)
}
### plot layout
sel.f.cex <- max(0.3, 0.8 - 0.01 * num.sel.f)
lmat <- rbind(c(1, 2, 3, 4), c(5, 6, 0, 7), c(0, 8, 0, 0))
h_t <- 0.1
h_m <- ifelse(is.null(meta(siamcat)), 0.8,
max(0.5, 0.7 - 0.01 * ncol(meta(siamcat))))
h_b <- 1 - h_t - h_m
if (verbose >2){
msg <- paste0("+++ Layout height values: ", h_t,
", ", h_m, ", ", h_b)
message(msg)
}
layout(lmat, widths = c(0.14, 0.58, 0.1, 0.14),
heights = c(h_t, h_m, h_b))
par(oma = c(3, 4, 3, 4))
### header row
########################################################################
# Title of Feature Weights
if (verbose > 2)
message("+++ plotting titles")
par(mar = c(0, 1.1, 3.1, 1.1))
plot(NULL, type = "n", xlim = c(-0.1, 0.1), xaxt = "n", xlab = "",
ylim = c(-0.1, 0.1), yaxt = "n", ylab = "", bty = "n"
)
mtext("Feature Weights", side = 3, line = 2, at = 0.04,
cex = 1, adj = 0.5)
# ######################################################################
# Title of heatmap and brackets for classes
par(mar = c(0, 4.1, 3.1, 5.1))
hm.label <- label$label[srt.idx]
plot(NULL, type = "n", xlim = c(0, length(hm.label)), xaxs = "i",
xaxt = "n", ylim = c(-0.5, 0.5), yaxs = "i", yaxt = "n",
xlab = "", ylab = "", bty = "n")
if (label$type=='BINARY'){
ul <- unique(hm.label)
for (l in seq_along(ul)) {
idx <- which(ul[l] == hm.label)
lines(c(idx[1] - 0.8, idx[length(idx)] - 0.2), c(0, 0))
lines(c(idx[1] - 0.8, idx[1] - 0.8), c(-0.2, 0))
lines(c(idx[length(idx)] - 0.2, idx[length(idx)] - 0.2),
c(-0.2, 0))
h <- (idx[1] + idx[length(idx)]) / 2
t <- gsub("_", " ",
names(label$info)[label$info == ul[l]])
t <- paste(t, " (n=", length(idx), ")", sep = "")
mtext(t, side = 3, line = -0.5, at = h, cex = 0.7, adj = 0.5)
}
}
mtext("Metagenomic Features", side = 3, line = 2,
at = length(hm.label) / 2, cex = 1, adj = 0.5)
# ######################################################################
# Heatmap legend
if (verbose > 2)
message("+++ plotting legend")
par(mar = c(3.1, 1.1, 1.1, 1.1))
barplot(
as.matrix(rep(1, 100)),
col = color.scheme,
horiz = TRUE,
border = NA,
ylab = "",
axes = FALSE
)
if (heatmap.type == "fc") {
key.ticks <- seq(round(min(img.data, na.rm = TRUE), digits = 1),
round(max(img.data, na.rm = TRUE), digits = 1),
length.out = 7)
key.label <- "Feature fold change over controls"
} else if (heatmap.type == "zscore") {
key.ticks <- seq(limits[1], limits[2], length.out = 7)
key.label <- "Feature z-score"
} else if (heatmap.type == 'log'){
key.ticks <- seq(limits[1], limits[2], length.out = 7)
key.label <- "Log10 relative abundance"
}
axis(side = 1, at = seq(0, 100, length.out = 7), labels = key.ticks)
mtext(key.label, side = 3, line = 0.5, at = 50, cex = 0.7, adj = 0.5)
# ######################################################################
# Model header (model sensitive)
par(mar = c(0, 6.1, 3.1, 1.1))
plot(NULL, type = "n", xlim = c(-0.1, 0.1), xaxt = "n", xlab = "",
ylim = c(-0.1, 0.1), yaxt = "n", ylab = "", bty = "n")
mtext(paste0(model.type, " model"), side = 3, line = 2, at = 0.04,
cex = 0.7, adj = 0.5)
mtext(paste("(|W| = ", num.sel.f, ")", sep = ""), side = 3, line = 1,
at = 0.04, cex = 0.7, adj = 0.5)
# ######################################################################
# Feature weights ( model sensitive)
if (verbose > 2)
message("+++ plotting feature weights")
if (any(colSums(abs(weight.matrix)) == 0)){
stop("Some models do not contain any features!")
}
rel.weights <- t(t(weight.matrix)/
colSums(abs(weight.matrix), na.rm=TRUE))
model.interpretation.feature.weights.plot(
rel.weights = rel.weights,
sel.idx = sel.idx,
mod.type = model.type,
label = label, verbose=verbose)
# ######################################################################
# Heatmap
if (verbose > 2)
message("+++ plotting heatmap")
if (model.type != "randomForest") {
model.interpretation.heatmap.plot(
image.data = img.data,
limits = limits,
color.scheme = color.scheme,
effect.size = rowMedians(rel.weights[sel.idx,]),
verbose = verbose)
} else {
auroc.effect <- apply(img.data, 2,
FUN = function(f) {
roc(predictor = f, response = label$label,
direction = "<", levels = label$info)$auc
})
bin.auroc.effect <- ifelse(auroc.effect >= 0.5, 1, 0)
model.interpretation.heatmap.plot(
image.data = img.data,
limits = limits,
color.scheme = color.scheme,
effect.size = bin.auroc.effect,
verbose = verbose
)
}
# ######################################################################
# Proportion of weights shown
if (verbose > 2)
message("+++ plotting proportion of weights shown")
model.interpretation.proportion.of.weights.plot(
s.idx = sel.idx,
weights = weight.matrix,
verbose = verbose
)
# ######################################################################
# Metadata and prediction
if (verbose > 2)
message("+++ plotting metadata and predictions")
model.interpretation.pred.and.meta.plot(
prediction = mean.agg.pred[srt.idx],
label = label,
meta = meta(siamcat)[srt.idx,],
verbose = verbose
)
if(!is.null(fn.plot)) {
tmp <- dev.off()
} else {
par(par.old)
}
e.time <- proc.time()[3]
if (verbose > 1){
msg <- paste("+ finished model.interpretation.plot in",
formatC(e.time - s.time, digits = 3), "s")
message(msg)
}
if (verbose == 1 & !is.null(fn.plot)){
msg <- paste(
"Successfully plotted model interpretation plot to:", fn.plot)
message(msg)
}
}
# function to plot the feature weights
#' @keywords internal
model.interpretation.feature.weights.plot <-
function(rel.weights,
sel.idx,
mod.type,
label,
verbose = 0) {
if (verbose > 2)
message("+ model.interpretation.feature.weights.plot")
if (mod.type == 'randomForest'){
relative.weights <- -rel.weights[sel.idx, ]
} else {
relative.weights <- rel.weights[sel.idx, ]
}
med <- rowMedians(relative.weights)
low.qt <- rowQuantiles(relative.weights, probs = 0.25)
upp.qt <- rowQuantiles(relative.weights, probs = 0.75)
if (mod.type != "randomForest") {
par(mar = c(0.1, 1.1, 0, 1.1))
mi <- min(-med - (abs(low.qt - upp.qt)))
mx <- max(-med + (abs(low.qt - upp.qt)))
barplot(-med, horiz = TRUE, width = 1, space = 0, yaxs = "i",
col = "gray30",
xlim = c(-max(abs(mi), abs(mx)),
max(abs(mi), max(mx))),
ylim = c(0, dim(relative.weights)[1]),
xlab = "", ylab = "", yaxt = "n")
x <- par("usr")
rect(x[1], x[3], x[2], x[4], col = "lightgray")
# grid lines
grid(NULL, NA, lty = 2, col = "gray99")
# plot the barplot again due to the idiotic way of how to change the
# background color of a plot in r
barplot(-med, horiz = TRUE, width = 1, space = 0, yaxs = "i",
col = "gray30",
xlim = c(-max(abs(mi), abs(mx)),
max(abs(mi), max(mx))),
ylim = c(0, dim(relative.weights)[1]),
xlab = "", ylab = "", yaxt = "n", xaxt = "n", add = TRUE)
# error bars
arrows(y0 = c(seq_along(med)) - 0.5, x0 = -upp.qt, x1 = -low.qt,
angle = 90, code = 3, length = 0.04)
mtext("median relative feat. weight", side = 1, line = 2,
at = 0, cex = 0.7, adj = 0.5)
# robustness indicated as percentage of models including a given
# feature (to the right of the barplot)
for (f in seq_along(sel.idx)) {
t <- paste(format(
100 * sum(rel.weights[sel.idx[f], ] != 0) /
dim(rel.weights)[2],
digits = 1, scientific = FALSE), "%", sep = "")
mtext(t, side = 4, line = 2.5, at = (f - 0.5),
cex = max(0.3, 0.8 - 0.01 * length(sel.idx)),
las = 2, adj = 1)
}
if (label$type=='BINARY'){
# label positive/negative class
mtext(gsub("_", " ",
names(which(label$info == min(label$info)))),
side = 2, at = floor(length(sel.idx) / 2), line = -2)
mtext(gsub("_", " ",
names(which(label$info == max(label$info)))),
side = 4, at = floor(length(sel.idx) / 2), line = -2)
}
mtext("effect size", side = 3, line = 1, at = (mx / 2),
cex = 0.7, adj = 1)
mtext("robustness", side = 3, line = 1, at = mx, cex = 0.7,
adj = 0)
} else {
par(mar = c(0.1, 1.1, 0, 1.1))
mx <- max(-med + (abs(low.qt - upp.qt)))
barplot(-med, horiz = TRUE, width = 1, space = 0, yaxs = "i",
col = "gray30", xlim = c(0, mx),
ylim = c(0, dim(relative.weights)[1]),
xlab = "", ylab = "", yaxt = "n")
x <- par("usr")
rect(x[1], x[3], x[2], x[4], col = "lightgray")
# grid lines
grid(NULL, NA, lty = 2, col = "gray99")
# plot the barplot again due to the idiotic way of how to change the
# background color of a plot in r
barplot(-med, horiz = TRUE, width = 1, space = 0, yaxs = "i",
col = "gray30", xlim = c(0, mx),
ylim = c(0, dim(relative.weights)[1]),
xlab = "", ylab = "", yaxt = "n", xaxt='n', add = TRUE)
# error bars
arrows(y0 = c(seq_along(med)) - 0.5, x0 = -upp.qt, x1 = -low.qt,
angle = 90, code = 3, length = 0.04)
# labels
mtext("median relative Gini coefficient", side = 1, line = 2,
at = mx / 2, cex = 0.7, adj = 0.5)
mtext("effect size", side = 3, line = 1,
at = (mx / 2), cex = 0.7, adj = 0.5)
}
box(lwd = 1)
if (verbose > 2)
message("+ finished model.interpretation.feature.weights.plot")
}
# function to plot the predictions and metadata
#' @keywords internal
model.interpretation.pred.and.meta.plot <-
function(prediction, label, meta = NULL, verbose = 0) {
if (verbose > 2)
message("+ model.interpretation.pred.and.meta.plot")
par(mar = c(1.1, 4.1, 0.3, 5.1))
if (label$type == 'BINARY'){
img.data <- as.matrix(prediction)
colnames(img.data) <- "Classification result"
} else {
img.data <- cbind(as.matrix(prediction),
as.matrix(label$label[names(prediction)]))
colnames(img.data) <- c('Predicted value', 'True value')
}
img.data.processed <- NULL
if (!is.null(meta)) {
img.data <- cbind(meta[, ncol(meta):1], img.data)
### transform any categorial column into a numeric one
for (m in seq_len(ncol(img.data))) {
cur.processed.data <- NULL
temp.metadata <- img.data[,m]
if (!all(is.numeric(temp.metadata))) {
temp.metadata <- factor(temp.metadata)
temp.metadata <- as.numeric(temp.metadata)
}
cur.processed.data <- (temp.metadata - min(temp.metadata,
na.rm = TRUE))
if (max(temp.metadata, na.rm = TRUE) != 0) {
cur.processed.data <- cur.processed.data /
max(cur.processed.data, na.rm = TRUE)
}
img.data.processed <-
cbind(img.data.processed, cur.processed.data)
}
} else {
img.data.processed <- img.data
}
grays <- rev(gray(seq(0, 1, length.out = 100)))
image(
as.matrix(img.data.processed),
col = grays,
xaxt = "n",
yaxt = "n",
xlab = "",
ylab = "",
bty = "n"
)
box(lwd = 1)
if (label$type == 'BINARY'){
# add deliminator between the different classes
abline(v = length(which(label$label == min(label$info))) /
length(label$label),
col = "red")
}
meta.cex <- max(0.3, 0.7 - 0.01 * ncol(img.data))
for (m in seq_len(ncol(img.data))) {
t <- colnames(img.data)[m]
t <- gsub("\\.|_", " ", t)
mtext(
t,
side = 4,
line = 1,
at = (m - 1) / (dim(img.data)[2] - 1),
cex = meta.cex,
las = 2
)
}
# mark missing values
x.increment <- 1/((nrow(img.data) - 1) * 2)
y.increment <- 1/((ncol(img.data) - 1) * 2)
for (m in seq_len(ncol(img.data))) {
idx <- which(is.na(img.data[, m]))
for (i in idx) {
x.left <- ((i-1) * x.increment * 2) - x.increment
x.right <- (i * x.increment * 2) - x.increment
y.bottom <- ((m-1) * y.increment * 2) - y.increment
y.top <- (m * y.increment * 2) - y.increment
rect(x.left, y.bottom, x.right, y.top, col = "yellow",
border=NA)
}
}
if (verbose > 2)
message("+ finished model.interpretation.pred.and.meta.plot")
}
# function to plot the proportion of weights
#' @keywords internal
model.interpretation.proportion.of.weights.plot <-
function(s.idx, weights, verbose = 0) {
if (verbose > 2)
message("+ model.interpretation.proportion.of.weights.plot")
par(mar = c(0.1, 6.1, 0, 1.1))
boxplot(colSums(abs(weights[s.idx,])) / colSums(abs(weights)),
ylim = c(0, 1))
mtext("proportion of", side = 1, line = 1, at = 1, adj = 0.5, cex = 0.7)
mtext("weight shown", side = 1, line = 2, at = 1, adj = 0.5, cex = 0.7)
if (verbose > 2)
message(
"+ finished model.interpretation.proportion.of.weights.plot")
}
# function to plot the percentage of features
#' @keywords internal
plot.percentage.of.features.plot <-
function(selected.weights, all.weights,
verbose = 0) {
if (verbose > 2)
message("+ plot.percentage.of.features")
par(mar = c(0.1, 6.1, 0, 1.1))
boxplot(dim(selected.weights)[1] / colSums(all.weights != 0),
ylim = c(0, 1))
mtext(
"percentage of",
side = 1,
line = 1,
at = 1,
adj = 0.5,
cex = 0.7
)
mtext(
"features shown",
side = 1,
line = 2,
at = 1,
adj = 0.5,
cex = 0.7
)
if (verbose > 2)
message("+ finished plot.percentage.of.features")
}
# function to plot the heatmap
#' @keywords internal
model.interpretation.heatmap.plot <-
function(image.data,
limits,
color.scheme,
effect.size,
verbose = 0) {
if (verbose > 2)
message("+ model.interpretation.heatmap.plot")
par(mar = c(0.1, 4.1, 0, 5.1))
image(image.data, zlim = limits, col = color.scheme, xaxt = "n",
yaxt = "n", xlab = "", ylab = "", bty = "n")
if (!is.null(effect.size)) {
for (f in seq_len(ncol(image.data))) {
mtext(colnames(image.data)[f], side = 4, line = 1,
at = (f - 1) / (dim(image.data)[2] - 1), las = 2,
cex = max(0.3, 0.8 - 0.01 * dim(image.data)[2]),
col = ifelse(effect.size[f] > 0,
color.scheme[1 + 4],
color.scheme[length(color.scheme) - 4]))
}
} else {
for (f in seq_len(ncol(image.data))) {
mtext(colnames(image.data)[f], side = 4, line = 1,
at = (f - 1) /
(dim(image.data)[2] - 1), las = 2,
cex = max(0.3, 0.8 - 0.01 * dim(image.data)[2]),
col = "black")
}
}
box(lwd = 1)
if (verbose > 2)
message("+ finished model.interpretation.heatmap.plot")
}
# function to prepare the data to plot fold change heatmap
#' @keywords internal
model.interpretation.prepare.heatmap.fc <-
function(heatmap.data,
limits,
sel.feat,
meta = NULL,
label,
log.n0,
verbose = 0) {
if (verbose > 2)
message("+ model.interpretation.prepare.heatmap.fc")
n.label <- min(label$info)
n.idx <- which(label$label == n.label)
if (!any(grepl("META", sel.feat))) {
feat.log <- log10(heatmap.data[sel.feat,] + log.n0)
img.data <- t(feat.log -
log10(rowMedians(heatmap.data[sel.feat, n.idx]) +
log.n0))
} else {
img.data <- matrix(NA,
nrow = length(sel.feat),
ncol = ncol(heatmap.data))
row.names(img.data) <- sel.feat
if (verbose > 2)
message("+ Selected features:")
for (f in sel.feat) {
if (verbose > 2){
msg <- paste("+++", f)
message(msg)
}
if (!grepl("META", f)) {
median.ctr <-
suppressWarnings(median(as.numeric(
heatmap.data[f, n.idx])))
img.data[f, ] <-
log10(heatmap.data[f, ] + log.n0) -
log10(median.ctr + log.n0)
} else {
meta.data <- meta[, grep(
strsplit(f, "_")[[1]][2],
colnames(meta),
ignore.case = TRUE,
value = TRUE
)]
meta.data <- data.frame(meta.data)[,1]
# transform metadata to zscores
meta.data <- as.numeric(meta.data)
meta.data <-
(meta.data - mean(meta.data, na.rm = TRUE)) /
sd(meta.data, na.rm = TRUE)
names(meta.data) <- rownames(meta)
img.data[f, ] <-
meta.data[colnames(heatmap.data)]
}
}
img.data <- t(img.data)
}
img.data[img.data < limits[1]] <- limits[1]
img.data[img.data > limits[2]] <- limits[2]
if (verbose > 2)
message("+ finished model.interpretation.heatmap.plot")
return(img.data)
}
# function to prepare the data to plot zscore heatmap
#' @keywords internal
model.interpretation.prepare.heatmap.zscore <-
function(heatmap.data, limits,
verbose = 0) {
if (verbose > 2)
message("+ prepare.heatmap.zscore")
# data is transposed and transformed to feature z-scores for display
img.data <-
(heatmap.data - rowMeans(heatmap.data)) / rowSds(heatmap.data)
img.data[img.data < limits[1]] <- limits[1]
img.data[img.data > limits[2]] <- limits[2]
if (verbose > 2)
message("+ finished prepare.heatmap.zscore")
return(t(img.data))
}
#' @keywords internal
model.interpretation.prepare.heatmap.log <-
function(heatmap.data, log.n0, verbose = 0) {
if (verbose > 2)
message("+ prepare.heatmap.log")
# data is transposed and transformed to feature z-scores for display
img.data <- log10(heatmap.data + log.n0)
if (verbose > 2)
message("+ finished prepare.heatmap.log")
return(t(img.data))
}
# function to select the features to plot on the heatmap
#' @keywords internal
model.interpretation.select.features <-
function(feature.weights,
model.type,
consens.thres,
label,
max.show,
verbose = 0) {
if (verbose > 2) message("+ model.interpretation.select.features")
# for linear models, select those that have been selected more than
# consens.thres percent of the models
if (model.type != "randomForest") {
sel.idx <- which(feature.weights$percentage > consens.thres)
names(sel.idx) <- rownames(feature.weights)[sel.idx]
# normalize by model size and order features by
# relative model weight
median.sorted.features <-
sort(feature.weights$median.rel.weight[sel.idx],
decreasing = TRUE,
index.return = TRUE)
# restrict to plot at maximum fifty features
if (length(sel.idx) > max.show) {
msg <- paste0("Restricting amount of features",
" to be plotted to ", max.show)
warning(msg)
median.sorted.features.abs <- sort(
abs(feature.weights$median.rel.weight),
decreasing = TRUE,
index.return = TRUE)
idx <- head(median.sorted.features.abs$ix, n = max.show)
median.sorted.features <- sort(
feature.weights$mean.rel.weight[idx],
decreasing = TRUE,
index.return = TRUE)
sel.idx <- idx[median.sorted.features$ix]
} else {
sel.idx <- sel.idx[median.sorted.features$ix]
}
} else {
# for Random Forest, caluclate relative median feature weights and sort
# by auroc as effect measure
median.sorted.features <-
sort(feature.weights$median.rel.weight,
decreasing = FALSE,
index.return = TRUE)
# take the feature with median higher than consens.threshold
sel.idx <-
median.sorted.features$ix[which(median.sorted.features$x >=
consens.thres)]
names(sel.idx) <- rownames(feature.weights)[sel.idx]
if (length(sel.idx) > max.show) {
sel.idx <- tail(sel.idx, n = max.show)
}
}
if (verbose > 2){
msg <- paste("+++ generating plot for a model with",
length(sel.idx), "selected features")
message(msg)
}
if (length(sel.idx)==0) stop("No features were selected for plotting!")
if (length(sel.idx)==1)
stop("Not enough features were selected for plotting!")
if (verbose > 2)
message("+ finished model.interpretation.select.features")
return(sel.idx)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.