View source: R/make_predictions.r
make.predictions | R Documentation |
This function takes a siamcat-class-object containing a model trained by train.model and performs predictions on a given test-set.
make.predictions(siamcat, siamcat.holdout = NULL,
normalize.holdout = TRUE, verbose = 1)
siamcat |
object of class siamcat-class |
siamcat.holdout |
optional, object of class siamcat-class on
which to make predictions, defaults to |
normalize.holdout |
boolean, should the holdout features be normalized
with a frozen normalization (see normalize.features) using the
normalization parameters in |
verbose |
integer, control output: |
This functions uses the model in the model_list
-slot of the
siamcat
object to make predictions on a given test set. The test set
can either consist of the test instances in the cross-validation, saved in
the data_split
-slot of the same siamcat
object, or a
completely external feature set, given in the form of another
siamcat
object (siamcat.holdout
).
object of class siamcat-class with the slot
pred_matrix
filled
data(siamcat_example)
# Simple example
siamcat_example <- train.model(siamcat_example, method='lasso')
siamcat.pred <- make.predictions(siamcat_example)
# Predictions on a holdout-set (not run)
# pred.mat <- make.predictions(siamcat.trained, siamcat.holdout,
# normalize.holdout=TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.