#' @name preprocess
#' @aliases preprocess,NGSexpressionSet-method
#' @rdname preprocess-methods
#' @docType methods
#' @description create the count dataset and normalize it following DEseq standard
#' @description function used by DEseq Do not use
#' @param x the NGSexpressionSet
#' @param condition the column in the samples table to use as grouing variable
#' @title description of function preprocess
#' @export
setGeneric('preprocess', ## Name
function (x, condition ) { ## Argumente der generischen Funktion
standardGeneric('preprocess') ## der Aufruf von standardGeneric sorgt für das Dispatching
}
)
setMethod('preprocess', signature = c ('NGSexpressionSet'),
definition = function (x, condition) {
if ( is.null( x@usedObj[['cds']]) ) {
x@usedObj[['cds']] <- list()
}
if ( is.na( match( condition, names(x@usedObj[['cds']]) ) )) {
#condition <- as.factor(x@samples[,condition])
dat <- list()
if ( nrow(x@raw) > 0 ) {
t <- as.matrix(x@raw)
}else {
t <- as.matrix(x@data)
}
#colnames( t ) <- x@samples[,condition]
colnames(t) <- NULL
dat$cds <- DESeq2::DESeqDataSetFromMatrix(
t,
x@samples,
formula( paste('~',condition ) )
)
#dat$cds <- DESeq2::estimateSizeFactors(dat$cds)
#DESeq2::sizeFactors(x@cds)
#dat$cds <- DESeq2::estimateDispersions(dat$cds)
#dat$vsdFull = DESeq2::varianceStabilizingTransformation( dat$cds )
x@usedObj[['cds']][[length(x@usedObj[['cds']])+1]] = dat$cds
names(x@usedObj[['cds']])[length(x@usedObj[['cds']])] = condition
}
x
}
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.