#' @name rfCluster_col
#' @aliases 'rfCluster_col,StefansExpressionSet-method
#' @title rfCluster_col
#' @name rfCluster_col-methods
#' @docType methods
#' @description This fucntion uses the RFclust.SGE to create fandomForest based unsupervised clusters on a subset of the data.
#' @description Default is on 200 cells using all (provided) genes with 500 forests and 500 trees per forest for 5 repetitions.
#' @description You are asked to give a k numer of expected clusters (better too many than too little), classifies the total
#' @description data using the 5 different unsupervised runs and all cluster ids from these runs are merged into the final cluster id.
#' @description This <summaryCol> will be part of the return objects samples table, together with a <usefulCol> where
#' @description all clusters with less than 10 cells have been merged into the 'gr. 0'.
#' @description The final results will be reported as new columns in the samples table containing the 'name'
#' @param x the single cells ngs object
#' @param email your email to use together with the SGE option
#' @param SGE whether to use the sun grid engine to calculate the rf grouping
#' @param rep how many repetitions for the random forest grouping should be run (default = 5)
#' @param slice how many processes should be started for each random forest clustering (default = 30)
#' @param bestColname the column name to store the results in
#' @param k the numer of expected clusters (metter more than to view)
#' @param subset how many cells should be randomly selected for the unsupervised clustering (default = 200)
#' @param name if you want to run multiple RFclusterings on e.g. using different input genes you need to specify a name (default ='RFclust')
#' @param nforest the numer of forests to grow for each rep (defualt = 500)
#' @param ntree the numer of trees per forest (default = 500)
#' @param settings a list of slurm settings (A t and p are used) that will make the RFclust.SGE module use a slurm backend for calculations.
#' @return a SingleCellsNGS object including the results and storing the RF object in the usedObj list (bestColname)
#' @export
setGeneric('rfCluster_col',
function ( x, rep=5, SGE=F, email, k=16, slice=30, subset=200,nforest=500, ntree=500, name='RFclust', settings=list()){
standardGeneric('rfCluster_col')
}
)
setMethod('rfCluster_col', signature = c ('StefansExpressionSet'),
definition = function ( x, rep=5, SGE=F, email, k=16, slice=30, subset=200 ,nforest=500, ntree=1000, name='RFclust', settings=list()) {
summaryCol=paste( 'All_groups', name,sep='_')
usefulCol=paste ('Usefull_groups',name, sep='_')
n= paste(x@name, name,sep='_')
m <- max(k)
OPATH <- paste( x@outpath,"/",str_replace( x@name, '\\s', '_'), sep='')
opath = paste( OPATH,"/RFclust.mp",sep='' )
if ( ! dir.exists(OPATH)){
dir.create( OPATH )
}
processed = FALSE
single_res_col <- paste('RFgrouping',name)
for ( i in 1:rep) {
tname = paste(n,i,sep='_')
if ( is.null(x@usedObj[['rfExpressionSets']][[tname]]) ){
## start the calculations!
if ( dir.exists(opath)){
if ( opath == '' ) {
stop( "Are you mad? Not giving me an tmp path to delete?")
}
system( paste('rm -f ',opath,"/*",tname,'*', sep='') )
}else {
dir.create( opath )
}
total <- ncol(x@data)
if ( total-subset <= 20 && rep > 1) {
stop( paste( 'You have only', total, 'samples in this dataset and request to draw random',subset, "samples, which leaves less than 20 cells to draw on random!") )
}
else if ( total < subset ){
stop ( paste("You can not ask for more than the max of",total, "samples in the test dataset!") )
}
if ( is.null(x@usedObj[['rfExpressionSets']])){
x@usedObj[['rfExpressionSets']] <- list()
x@usedObj[['rfObj']][[ i ]] <- list()
}
if ( length( x@usedObj[['rfExpressionSets']] ) < i ) {
x@usedObj[['rfExpressionSets']][[ i ]] <- drop.samples( x, colnames(x@data)[sample(c(1:total),total-subset)], tname )
if ( length(settings) > 0 ){
x@usedObj[['rfObj']][[ i ]] <-
RFclust.SGE (
dat=x@usedObj[['rfExpressionSets']][[ i ]]@data,
SGE=F,
slices=slice,
email=email,
tmp.path=opath,
name= tname,
slurm=T,
settings=settings
)
}else {
x@usedObj[['rfObj']][[ i ]] <-
RFclust.SGE (
dat=x@usedObj[['rfExpressionSets']][[ i ]]@data,
SGE=SGE,
slices=slice,
email=email,
tmp.path=opath,
name= tname
)
}
}
names(x@usedObj[['rfExpressionSets']]) [i] <- tname
names(x@usedObj[['rfObj']]) [i] <- tname
x@usedObj[['rfObj']][[ i ]] <- runRFclust ( x@usedObj[['rfObj']][[ i ]] , nforest=nforest, ntree=ntree, name=tname )
if ( SGE){
print ( "You should wait some time now to let the calculation finish! check: system('qstat -f') -> re-run the function")
}
else {
print ( "You should wait some time now to let the calculation finish! -> re-run the function")
print ( "check: system( 'ps -Af | grep Rcmd | grep -v grep')")
}
}
else {
## read in the results
try ( x@usedObj[['rfObj']][[ i ]] <- runRFclust ( x@usedObj[['rfObj']][[ i]] , nforest=nforest, ntree=ntree, name=tname ) )
if ( ! is.null(x@usedObj[['rfObj']][[ i ]]@RFfiles[[tname]]) ){
stop( "please re-run this function later - the clustring process has not finished!")
}
for ( a in k ){
x@usedObj[["rfExpressionSets"]][[i]]@samples <-
x@usedObj[["rfExpressionSets"]][[i]]@samples[ ,
is.na(match ( colnames(x@usedObj[["rfExpressionSets"]][[i]]@samples), paste('group n=',a) ))==T
]
}
x <- createRFgrouping_col( x, RFname=tname, k=10, single_res_col = paste( single_res_col, i) )
print ( paste("Done with cluster",i))
processed = TRUE
}
}
x
}
)
#' @name createRFgrouping_col
#' @aliases createRFgrouping_col,StefansExpressionSet-method
#' @rdname createRFgrouping_col-methods
#' @docType methods
#' @description Create a sample grouping data from one RFclust.SGE object
#' @param x the StefansExpressionSet object
#' @param RFname the name of the RFclust.SGE object in the StefansExpressionSet object. This object has to be populized with data!
#' @param k the number of wanted groups ( default = 10)
#' @param single_res_col the new column in the samples table default= paste('RFgrouping', RFname)
#' @param colFunc a function giving the colours back for the grouping (gets the amount of groups) default = function(x){rainbow(x)}
#' @title description of function createRFgrouping_col
#' @export
setGeneric('createRFgrouping_col', ## Name
function ( x, RFname, k=10, single_res_col = paste('StefansExpressionSet',RFname), colFunc=NULL) { ## Argumente der generischen Funktion
standardGeneric('createRFgrouping_col') ## der Aufruf von standardGeneric sorgt für das Dispatching
}
)
setMethod('createRFgrouping_col', signature = c ('StefansExpressionSet'),
definition = function ( x, RFname, k=10, single_res_col = paste('RFgrouping',RFname), colFunc=NULL) {
if ( is.na( match( RFname, names(x@usedObj[['rfObj']])))){
stop( paste("the RFname",RFname,"is not defined in this object; defined grouings are:",paste(names(x@usedObj[['rfObj']]), collapse=" ",sep=', ') ) )
}
browser()
groups <- createGroups( x@usedObj[['rfObj']][[RFname]], k=k, name=RFname )
x@usedObj[['rfExpressionSets']][[RFname]]@samples <-
cbind ( x@usedObj[['rfExpressionSets']][[RFname]]@samples, groups[,3:(2+length(k))] )
le <- ncol(x@usedObj[['rfExpressionSets']][[RFname]]@samples)
colnames(x@usedObj[['rfExpressionSets']][[RFname]]@samples)[(le-length(k)+1):le] <-
paste('group n=',k)
m <- max(k)
## create the predictive random forest object
## this is not necessary if the whole object has been analyzed!
if ( all.equal( colnames(x@usedObj[['rfObj']][[RFname]]@dat), colnames(x@data) ) ) {
## use the column in grouping
for ( id in 1:length(k) ){
x@samples[, paste( single_res_col, ' n=', k[id], sep="") ] = factor(groups[,2+id], levels=c(1:k[id]))
x <- colors_4( x, paste( single_res_col, ' n=', k[id], sep="") )
}
}else {
#predict based on the RFdata
x@usedObj[['rfExpressionSets']][[RFname]] <-
bestGrouping( x@usedObj[['rfExpressionSets']][[RFname]], group=paste('group n=', m), bestColname = paste('OptimalGrouping',m ,RFname))
x@samples[, paste( single_res_col) ] <-
predict( x@usedObj[['rfExpressionSets']][[RFname]]@usedObj[[paste( 'predictive RFobj group n=',m) ]], t(as.matrix(x@data)) )
x@samples[, paste( single_res_col) ] <- factor( x@samples[, paste( single_res_col) ], levels= 1:m )
x <- colors_4( x, single_res_col )
}
x
}
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.