DGU | R Documentation |
IgGeneUsage detects differential gene usage (DGU) in immune repertoires that belong to two biological conditions.
DGU(ud,
mcmc_warmup,
mcmc_steps,
mcmc_chains,
mcmc_cores,
hdi_lvl,
adapt_delta,
max_treedepth,
paired = FALSE)
ud |
Data.frame with 4 or 5 columns:
ud can also be be a SummarizedExperiment object. See examplary data 'data(Ig_SE)' for more information. |
mcmc_chains , mcmc_warmup , mcmc_steps , mcmc_cores |
Number of MCMC chains (default = 4), number of cores to use (default = 1), length of MCMC chains (default = 1,500), length of adaptive part of MCMC chains (default = 500). |
hdi_lvl |
Highest density interval (HDI) (default = 0.95). |
adapt_delta |
MCMC setting (default = 0.95). |
max_treedepth |
MCMC setting (default = 12). |
paired |
should a paired samples differential Ig gene analaysis be performed (default = FALSE)? |
The main input of IgGeneUsage is a table with Ig gene usage frequencies for a set of repertoires that belong to one of two biological condition. For the DGU analysis between two biological conditions, IgGeneUsage employs a Bayesian hierarchical model for zero-inflated beta-binomial (ZIBB) regression (see vignette 'User Manual: IgGeneUsage').
dgu |
DGU statistics for each gene: 1) es = effect size on DGU (mean, median standard error (se), standard deviation (sd), L (low boundary of HDI), H (high boundary of HDI); 2) contrast = direction of the effect; 3) pmax = probability of DGU. This summary is only available if the input data contains at least two conditions |
gu |
gene usage (GU) summary of each gene in each condition |
fit |
stanfit object |
ppc |
two types of posterior predictive checks: 1) repertoire- specific, 2) condition-specific |
ud |
processed gene usage data used for the model |
Simo Kitanovski <simo.kitanovski@uni-due.de>
LOO, Ig, IGHV_Epitopes, IGHV_HCV, Ig_SE, d_zibb_1, d_zibb_2, d_zibb_3
# input data
data(d_zibb_2)
head(d_zibb_2)
# run differential gene usage (DGU)
M <- DGU(ud = d_zibb_2,
mcmc_warmup = 350,
mcmc_steps = 1500,
mcmc_chains = 2,
mcmc_cores = 1,
hdi_lvl = 0.95,
adapt_delta = 0.8,
max_treedepth = 10,
paired = FALSE)
# look at M elements
names(M)
# look at DGU results
head(M$dgu)
# look at posterior predictive checks (PPC)
head(M$ppc)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.