R/tune.spls.R

Defines functions tune.spls

Documented in tune.spls

#############################################################################################################
# Authors:
#   Florian Rohart, The University of Queensland, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD
#   Kim-Anh Le Cao, The University of Queensland, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD
#   Benoit Gautier, The University of Queensland, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD
#   Francois Bartolo, Institut National des Sciences Appliquees et Institut de Mathematiques, Universite de Toulouse et CNRS (UMR 5219), France
#
# created: 2013
# last modified: 05-10-2017
#
# Copyright (C) 2013
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
#############################################################################################################


# ========================================================================================================
# tune.spls: chose the optimal number of parameters per component on a spls method
# ========================================================================================================
# TODO details on nrepeat
# TODO details on pls vs spls
# TODO tidy outputs preferably in an array
#' Tuning functions for sPLS and PLS functions
#' 
#' @template description/tune
#' 
#' @template section/folds
#' @template section/nrepeat
#' @template section/measure-pls
#' @template section/t-test-process
#' 
#' @section more:
#' See also \code{?perf} for more details.
#' 
#' @inheritParams spls
#' @template arg/test.keepX-X.matrix
#' @template arg/test.keepY
#' @template arg/validation
#' @template arg/folds
#' @template arg/nrepeat
#' @param measure The tuning measure to use. See details.
#' @template arg/progressBar
#' @template arg/BPPARAM
#' @param seed set a number here if you want the function to give reproducible outputs. 
#' Not recommended during exploratory analysis. Note if RNGseed is set in 'BPPARAM', this will be overwritten by 'seed'. 
#' @param limQ2 Q2 threshold for recommending optimal \code{ncomp}.
#' @param ... Optional parameters passed to \code{\link{spls}}
#' @return A list that contains: \item{cor.pred}{The correlation of predicted vs
#'   actual components from X (t) and Y (u) for each
#'   component}\item{RSS.pred}{The Residual Sum of Squares of predicted vs
#'   actual components from X (t) and Y (u) for each component}
#'   \item{choice.keepX}{returns the number of variables selected for X (optimal
#'   keepX) on each component.} \item{choice.keepY}{returns the number of
#'   variables selected for Y (optimal keepY) on each component.}
#'   \item{choice.ncomp}{returns the optimal number of components for the model
#'   fitted with \code{$choice.keepX} and \code{$choice.keepY} } \item{call}{The
#'   functioncal call including the parameteres used.}
#' @author Kim-Anh Lê Cao, Al J Abadi, Benoit Gautier, Francois Bartolo,
#' Florian Rohart,
#' @seealso \code{\link{splsda}}, \code{\link{predict.splsda}} and
#' http://www.mixOmics.org for more details.
#' @references mixOmics article:
#' 
#' Rohart F, Gautier B, Singh A, Lê Cao K-A. mixOmics: an R package for 'omics
#' feature selection and multiple data integration. PLoS Comput Biol 13(11):
#' e1005752
#' 
#' PLS and PLS citeria for PLS regression: Tenenhaus, M. (1998). La regression
#' PLS: theorie et pratique. Paris: Editions Technic.
#' 
#' Chavent, Marie and Patouille, Brigitte (2003). Calcul des coefficients de
#' regression et du PRESS en regression PLS1. Modulad n, 30 1-11. (this is the
#' formula we use to calculate the Q2 in perf.pls and perf.spls)
#' 
#' Mevik, B.-H., Cederkvist, H. R. (2004). Mean Squared Error of Prediction
#' (MSEP) Estimates for Principal Component Regression (PCR) and Partial Least
#' Squares Regression (PLSR). Journal of Chemometrics 18(9), 422-429.
#' 
#' sparse PLS regression mode:
#' 
#' Lê Cao, K. A., Rossouw D., Robert-Granie, C. and Besse, P. (2008). A sparse
#' PLS for variable selection when integrating Omics data. Statistical
#' Applications in Genetics and Molecular Biology 7, article 35.
#' 
#' One-sided t-tests (suppl material):
#' 
#' Rohart F, Mason EA, Matigian N, Mosbergen R, Korn O, Chen T, Butcher S,
#' Patel J, Atkinson K, Khosrotehrani K, Fisk NM, Lê Cao K-A&, Wells CA&
#' (2016). A Molecular Classification of Human Mesenchymal Stromal Cells. PeerJ
#' 4:e1845.
#' @keywords regression multivariate
#' @export
#' @examples
#' 
#' \dontrun{
#' data(liver.toxicity)
#' X <- liver.toxicity$gene
#' Y <- liver.toxicity$clinic
#' set.seed(42)
#' tune.res = tune.spls( X, Y, ncomp = 3,
#'                   test.keepX = c(5, 10, 15),
#'                   test.keepY = c(3, 6, 8), measure = "cor",
#'                   folds = 5, nrepeat = 3, progressBar = TRUE)
#' tune.res$choice.ncomp
#' tune.res$choice.keepX
#' tune.res$choice.keepY
#' # plot the results
#' plot(tune.res)
#' }
# TODO change this so that it simply wraps perf
tune.spls <- 
  function(X,
           Y,
           test.keepX = NULL,
           test.keepY = NULL,
           ncomp,
           validation = c('Mfold', 'loo'),
           nrepeat = 1,
           folds,
           mode = c('regression', 'canonical', 'classic'),
           measure = NULL,
           BPPARAM = SerialParam(),
           seed = NULL,
           progressBar = FALSE,
           limQ2 = 0.0975,
           ...
  ) {
    out = list()
    mode <- match.arg(mode)
    
    BPPARAM$RNGseed <- seed
    
    X <- .check_numeric_matrix(X, block_name = 'X')
    Y <- .check_numeric_matrix(Y, block_name = 'Y')
    
    check_cv <- .check_cv_args(validation = validation, 
                               nrepeat = nrepeat, folds = folds, 
                               N = nrow(X))
    validation <- check_cv$validation
    nrepeat <- check_cv$nrepeat
    folds <- check_cv$folds
    
    test.keepX <- .change_if_null(arg = test.keepX, default = ncol(X))
    test.keepY <- .change_if_null(arg = test.keepY, default = ncol(Y))
    
    test.keepX <- unique(test.keepX)
    test.keepY <- unique(test.keepY)
    
    spls.model <- !(length(test.keepX) == 1 & length(test.keepY) == 1)
    
    if (ncol(Y) == 1) {
      res <- tune.spls1(X = X, 
                        Y = Y,
                        ncomp = ncomp,
                        test.keepX = test.keepX,
                        validation = validation,
                        folds = folds,
                        measure = measure, # can do a R2 per Y (correlation, linear regression R2), need to call MSEP (see perf.spls).
                        progressBar = progressBar,
                        nrepeat = nrepeat,
                        BPPARAM = BPPARAM,
                        seed = seed,
                        ...
      )
      ## --- call
      res$call <- NULL
      ## eval all but X and Y
      mc <- mget(names(formals())[-1:-2], sys.frame(sys.nframe()))
      ## replace function, X and Y with unevaluated call
      mc <- as.call(c(as.list(match.call())[1:3], mc))
      res <- c(list(call = mc), res)
      class(res) <- 'tune.spls1'
      return(res)
    }
    
    measure <- match.arg(measure, choices = c('cor', 'RSS'))
    
    choice.keepX = choice.keepY = NULL
    measure.table.cols <- c('comp', 'keepX', 'keepY', 'repeat', 't', 'u', 'cor', 'RSS')
    # if (spls.model)
    # {
    measure.pred <- expand.grid(keepX = test.keepX, 
                                keepY = test.keepY,
                                V = c('u', 't'),
                                measure = c('cor', 'RSS'),
                                comp = seq_len(ncomp),
                                optimum.keepA = FALSE)
    # } else {
    #   # Q2 only
    #   measure.pred <- expand.grid(
    #                               comp = seq_len(ncomp),
    #                               optimum = FALSE)
    # }
    measure.pred <- data.frame(measure.pred)
    measure.pred <- cbind(measure.pred, 
                          value.v = I(rep(list(data.frame(matrix(NA_real_, ncol= 1, nrow = nrepeat))), 
                                          times = nrow(measure.pred))),
                          value.Q2.total = I(rep(list(data.frame(matrix(NA_real_, ncol= 1, nrow = nrepeat))), 
                                                 times = nrow(measure.pred)))
    )
    # measure.pred$value <- lapply(measure.pred$value, as.data.frame)
    
    use_progressBar <- progressBar & (is(BPPARAM, 'SerialParam'))
    n_keepA <- length(test.keepX) * length(test.keepY)
    
    ## initialise optimal keepX/Y
    measure.pred$optimum.keepA <- FALSE 
    measure.pred[
      measure.pred$keepX == test.keepX[1] &
        measure.pred$keepY == test.keepY[1]
      ,]$optimum.keepA <- TRUE
    
    
    # list of all keepX/keepY passed to this via bplapply. calculates the 
    # correlation and RSS of components for given input keepX/Y and returns
    # a subset of measure.pred containing these updated values
    iter_keep.vals <- function(keep.vals) { # keep.vals = list(keepX, keepY)
      
      keepX <- keep.vals$keepX # set keep values
      keepY <- keep.vals$keepY
      
      if (use_progressBar) {
        n_tested <- n_tested + 1
        prog_level <- n_tested / n_keepA
        .progressBar(prog_level, title = 'of features tested')
      }
      # generate model using input parameters
      pls.model <- spls(X = X, Y = Y, 
                        keepX = c(choice.keepX, keepX), 
                        keepY = c(choice.keepY, keepY), 
                        ncomp = comp, mode = mode, ...)
      
      # run perf in serial to avoid nested parallel processes, but make sure seed is passed into perf
      pls.perf <- perf(pls.model, validation = validation, folds = folds, nrepeat = nrepeat,
                       BPPARAM = SerialParam(), seed = seed)
      
      
      # ensures the only rows that are returned are those manipulated in this
      # iteration. otherwise, later component iterations will undo this work
      adjusted.rows <- c()
      for (measure_i in c('cor', 'RSS')) # for each measure...
      {
        
        for (v in c('u', 't')) # for each set of components ...
        {
          ## extract the relevant row index in measure.pred FOR VALUE.V
          vpred.idx <- rownames(measure.pred[measure.pred$comp == comp & 
                                               measure.pred$keepX == keepX &
                                               measure.pred$keepY == keepY &
                                               measure.pred$V == v &
                                               measure.pred$measure == measure_i,])
          
          # extract relevant values
          measure.vpred <- pls.perf$measures[[sprintf("%s.%spred", measure_i, v)]]$values
          measure.vpred <- measure.vpred[measure.vpred$comp == comp,]
          measure.pred[vpred.idx,]$value.v[[1]] <- measure.vpred$value # adjust measure.pred
          
          ## extract the relevant row index in measure.pred FOR Q2
          Q2.idx <- rownames(measure.pred[measure.pred$comp == comp & 
                                            measure.pred$keepX == keepX &
                                            measure.pred$keepY == keepY &
                                            # TODO the following filtering criteria needs review - not sure if Q2 is per c('u' , 't')
                                            measure.pred$V == v &
                                            measure.pred$measure == measure_i
                                          ,])
          # extract relevant values
          value.Q2.total <- pls.perf$measures$Q2.total$values
          value.Q2.total <- filter(value.Q2.total, comp == comp)$value
          measure.pred[Q2.idx,]$value.Q2.total[[1]] <- value.Q2.total  # adjust measure.pred
          
          adjusted.rows <- c(adjusted.rows, vpred.idx, Q2.idx) # append adjusted rows to list
        }
        
      }
      return(measure.pred[unique(adjusted.rows),])
    }
    
    # takes in the final measure.preds data.frame and adjusts the optimum.keepA 
    # feature to reflect the optimal values depending on the t.test
    DetermineOptimalKeepVals <- function(measure.pred, comp, keep.vals, nrepeat) {
      
      ## output TRUE if value improves opt for cor or RSS, else FALSE
      .check_improvement <- function(opt, value, measure, nrepeat) {
        
        if (nrepeat > 2) {
          t.test.res <- tryCatch(t.test(x = opt, y = value, alternative = ifelse(measure == 'cor', 'less', 'greater')),
                                 error = function(e) e)
          improved <- t.test.res$p.value < 0.05
        } else
        {
          ## compare values
          improved <-  if (measure == 'cor') mean(opt) < mean(value) else mean(opt) > mean(value)
        }
        improved
      }
      
      for (keep.val in keep.vals) {
        trial.keepX <- keep.val$keepX # set keep values
        trial.keepY <- keep.val$keepY
        
        # current best for X components
        optimum.u <- measure.pred[measure.pred$comp == comp & 
                                    measure.pred$optimum.keepA == TRUE &
                                    measure.pred$V == 'u' &
                                    measure.pred$measure == measure
                                  ,]$value.v[[1]]
        # current best for Y components
        optimum.t <- measure.pred[measure.pred$comp == comp &
                                    measure.pred$optimum.keepA == TRUE &
                                    measure.pred$V == 't' &
                                    measure.pred$measure == measure
                                  ,]$value.v[[1]]
        # new keepX/Y pair to try for X components
        value.u <- measure.pred[measure.pred$comp == comp &
                                  measure.pred$keepX == trial.keepX &
                                  measure.pred$keepY == trial.keepY &
                                  measure.pred$V == 'u' &
                                  measure.pred$measure == measure
                                ,]$value.v[[1]]
        # new keepX/Y pair to try for Y components
        value.t <- measure.pred[measure.pred$comp == comp &
                                  measure.pred$keepX == trial.keepX &
                                  measure.pred$keepY == trial.keepY &
                                  measure.pred$V == 't' &
                                  measure.pred$measure == measure
                                ,]$value.v[[1]]
        
        ## workaround for constant values in t.test 
        offset.eps <- seq(1, 2, length.out = length(optimum.u))/1e6
        optimum.t <- optimum.t + offset.eps
        optimum.u <- optimum.u + offset.eps
        value.t <- value.t + offset.eps
        value.u <- value.u + offset.eps
        
        # see if there is significant improvement in measure based on new keepX/Y pair
        u.improved <-.check_improvement(opt = optimum.u, value = value.u, measure = measure, nrepeat = nrepeat)
        t.improved <-.check_improvement(opt = optimum.t, value = value.t, measure = measure, nrepeat = nrepeat)
        improved <- if (mode == 'canonical') u.improved & t.improved else u.improved
        if (improved) # if so ...
        {
          ## set previous to FALSE
          measure.pred[measure.pred$comp == comp
                       ,]$optimum.keepA <- FALSE
          ## update optimum
          measure.pred[measure.pred$comp == comp &
                         measure.pred$keepX == trial.keepX &
                         measure.pred$keepY == trial.keepY
                       ,]$optimum.keepA <- TRUE
        }
      }
      
      return(measure.pred)
    }
    
    # generate list of lists containing all keepX/Y pairs to test
    keep.vals <- list()
    i <- 1
    for(keepX in test.keepX){
      for(keepY in test.keepY){
        keep.vals[[i]] <- list(keepX = keepX, keepY=keepY)
        i<-i+1
      }
    }
    
    for (comp in seq_len(ncomp)){ # for each component to test...
      if (use_progressBar) {
        n_tested <- 0
        cat(sprintf("\ntuning component: %s\n", comp))
      }
      
      # calculate measure values for specific comp, keepX/Y
      m.p <- bplapply(X=keep.vals, FUN = iter_keep.vals, 
                      BPPARAM = BPPARAM) 
      
      for (d in m.p) { # output will be a list, so adjust global measure.pred
                       # to contain the desired values
        measure.pred[rownames(d), ] <- d
      }
      
      # changes measure.pred$optimum.keepA to reflect results of t.tests
      measure.pred <- DetermineOptimalKeepVals(measure.pred, comp, keep.vals, nrepeat)
      
      # extract optimal keepX for this component
      choice.keepX.ncomp <-  measure.pred[measure.pred$comp == comp & 
                                            measure.pred$optimum.keepA == TRUE &
                                            measure.pred$measure == measure & 
                                            measure.pred$V == 't' ## doesn't matter t or u
                                          ,]$keepX
      # extract optimal keepY for this component
      choice.keepY.ncomp <-  measure.pred[measure.pred$comp == comp & 
                                            measure.pred$optimum.keepA == TRUE &
                                            measure.pred$measure == measure &
                                            measure.pred$V == 't'
                                          ,]$keepY
      choice.keepX = c(choice.keepX, choice.keepX.ncomp)
      choice.keepY = c(choice.keepY, choice.keepY.ncomp)
      
    } # end comp
    
    choice.ncomp <- 1
    for (comp in seq_len(ncomp))
    {
      Q2.total <- measure.pred[measure.pred$comp == comp & 
                                 measure.pred$keepX == keepX &
                                 measure.pred$keepY == keepY &
                                 measure.pred$V == 'u'
                               ,]$value.Q2.total[[1]]
      Q2.opt <- measure.pred[measure.pred$comp == choice.ncomp & 
                               measure.pred$keepX == keepX &
                               measure.pred$keepY == keepY &
                               measure.pred$V == 'u'
                             ,]$value.Q2.total[[1]]
      keep.comp <- mean(Q2.total) >= limQ2
      if (keep.comp)
        # we want the first component that drops Q2 below limQ2
        choice.ncomp <- comp + 1
    }
    names(choice.keepX) <- names(choice.keepY) <- paste0('comp', seq_len(ncomp))
    out$choice.keepX = choice.keepX
    out$choice.keepY = choice.keepY
    out$choice.ncomp = choice.ncomp
    
    ## add mean and sd
    val <- unclass(measure.pred$value.v)
    measure.pred$mean <- sapply(measure.pred$value.v, function(x){
      mean(c(as.matrix(x)), na.rm = TRUE)
    })
    
    measure.pred$sd <- sapply(measure.pred$value.v, function(x){
      sd(c(as.matrix(x)), na.rm = TRUE)
    })
    
    out$measure.pred = measure.pred
    ### evaluate all for output except X and Y to save memory
    ## eval all but X and Y
    mc <- mget(names(formals())[-1:-2], sys.frame(sys.nframe()))
    ## replace function, X and Y with unevaluated call
    mc <- as.call(c(as.list(match.call())[1:3], mc))
    out <- c(list(call = mc), out)
    class <- c('tune.pls')
    class(out) <- if (spls.model) class <- c(class, 'tune.spls')
    return(out)
  }
mixOmicsTeam/mixOmics documentation built on Nov. 4, 2024, 8:56 a.m.