View source: R/mint.block.spls.R
mint.block.spls | R Documentation |
Function to integrate data sets measured on the same samples (N-integration) and to combine multiple independent studies (P-integration) using variants of sparse multi-group and generalised PLS with variable selection (unsupervised analysis).
mint.block.spls(
X,
Y,
indY,
study,
ncomp = 2,
keepX,
keepY,
design,
scheme,
mode,
scale = TRUE,
init,
tol = 1e-06,
max.iter = 100,
near.zero.var = FALSE,
all.outputs = TRUE
)
X |
A named list of data sets (called 'blocks') measured on the same samples. Data in the list should be arranged in samples x variables, with samples order matching in all data sets. |
Y |
Matrix or vector response for a multivariate regression framework.
Data should be continuous variables (see |
indY |
To be supplied if Y is missing, indicates the position of the
matrix / vector response in the list |
study |
Factor, indicating the membership of each sample to each of the studies being combined |
ncomp |
the number of components to include in the model. Default to 2. Applies to all blocks. |
keepX |
A named list of same length as X. Each entry is the number of variables to select in each of the blocks of X for each component. By default all variables are kept in the model. |
keepY |
Only if Y is provided (and not |
design |
numeric matrix of size (number of blocks in X) x (number of
blocks in X) with values between 0 and 1. Each value indicates the strenght
of the relationship to be modelled between two blocks; a value of 0
indicates no relationship, 1 is the maximum value. Alternatively, one of
c('null', 'full') indicating a disconnected or fully connected design,
respecively, or a numeric between 0 and 1 which will designate all
off-diagonal elements of a fully connected design (see examples in
|
scheme |
Character, one of 'horst', 'factorial' or 'centroid'. Default =
|
mode |
Character string indicating the type of PLS algorithm to use. One
of |
scale |
Logical. If scale = TRUE, each block is standardized to zero means and unit variances (default: TRUE) |
init |
Mode of initialization use in the algorithm, either by Singular
Value Decomposition of the product of each block of X with Y ('svd') or each
block independently ('svd.single'). Default = |
tol |
Positive numeric used as convergence criteria/tolerance during the
iterative process. Default to |
max.iter |
Integer, the maximum number of iterations. Default to 100. |
near.zero.var |
Logical, see the internal |
all.outputs |
Logical. Computation can be faster when some specific
(and non-essential) outputs are not calculated. Default = |
The function fits sparse multi-group generalised PLS models with a specified
number of ncomp
components. An outcome needs to be provided, either
by Y
or by its position indY
in the list of blocks X
.
Multi (continuous)response are supported. X
and Y
can contain
missing values. Missing values are handled by being disregarded during the
cross product computations in the algorithm block.pls
without having
to delete rows with missing data. Alternatively, missing data can be imputed
prior using the nipals
function.
The type of algorithm to use is specified with the mode
argument.
Four PLS algorithms are available: PLS regression ("regression")
, PLS
canonical analysis ("canonical")
, redundancy analysis
("invariant")
and the classical PLS algorithm ("classic")
(see
References and more details in ?pls
).
mint.block.spls
returns an object of class "mint.spls",
"block.spls"
, a list that contains the following components:
X |
the centered and standardized original predictor matrix. |
Y |
the centered and standardized original response vector or matrix. |
ncomp |
the number of components included in the model for each block. |
mode |
the algorithm used to fit the model. |
mat.c |
matrix of
coefficients from the regression of X / residual matrices X on the
X-variates, to be used internally by |
variates |
list
containing the |
loadings |
list containing the estimated loadings for the variates. |
names |
list containing the names to be used for individuals and variables. |
nzv |
list containing the zero- or near-zero predictors information. |
tol |
the tolerance used in the iterative algorithm, used for subsequent S3 methods |
max.iter |
the maximum number of iterations, used for subsequent S3 methods |
iter |
Number of iterations of the algorithm for each component |
Florian Rohart, Benoit Gautier, Kim-Anh Lê Cao, Al J Abadi
Rohart F, Eslami A, Matigian, N, Bougeard S, Lê Cao K-A (2017). MINT: A multivariate integrative approach to identify a reproducible biomarker signature across multiple experiments and platforms. BMC Bioinformatics 18:128.
Eslami, A., Qannari, E. M., Kohler, A., and Bougeard, S. (2014). Algorithms for multi-group PLS. J. Chemometrics, 28(3), 192-201.
spls
, summary
, plotIndiv
,
plotVar
, predict
, perf
,
mint.block.pls
, mint.block.plsda
,
mint.block.splsda
and http://www.mixOmics.org/mixMINT for more
details.
data(breast.TCGA)
# for the purpose of this example, we create data that fit in the context of
# this function.
# We consider the training set as study1 and the test set as another
# independent study2.
study = c(rep("study1",150), rep("study2",70))
# to put the data in the MINT format, we rbind the two studies
mrna = rbind(breast.TCGA$data.train$mrna, breast.TCGA$data.test$mrna)
mirna = rbind(breast.TCGA$data.train$mirna, breast.TCGA$data.test$mirna)
# For the purpose of this example, we create a continuous response by
# taking the first mrna variable, and removing it from the data
Y = mrna[,1]
mrna = mrna[,-1]
data = list(mrna = mrna, mirna = mirna)
# we can now apply the function
res = mint.block.splsda(data, Y, study=study, ncomp=2,
keepX = list(mrna=c(10,10), mirna=c(20,20)))
res
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.