plotArrow: Arrow sample plot

View source: R/plotArrow.R

plotArrowR Documentation

Arrow sample plot

Description

Represents samples from multiple coordinates to assess the alignment in the latent space.

Usage

plotArrow(
  object,
  comp = c(1, 2),
  ind.names = TRUE,
  group = NULL,
  col.per.group = NULL,
  col = NULL,
  ind.names.position = c("start", "end"),
  ind.names.size = 2,
  pch = NULL,
  pch.size = 2,
  arrow.alpha = 0.6,
  arrow.size = 0.5,
  arrow.length = 0.2,
  legend = if (is.null(group)) FALSE else TRUE,
  legend.title = NULL,
  ...
)

Arguments

object

object of class inheriting from mixOmics: PLS, sPLS, rCC, rGCCA, sGCCA, sGCCDA

comp

integer vector of length two (or three to 3d). The components that will be used on the horizontal and the vertical axis respectively to project the individuals.

ind.names

either a character vector of names for the individuals to be plotted, or FALSE for no names. If TRUE, the row names of the first (or second) data matrix is used as names (see Details).

group

Factor indicating the group membership for each sample.

col.per.group

character (or symbol) color to be used when 'group' is defined. Vector of the same length as the number of groups.

col

character (or symbol) color to be used, possibly vector.

ind.names.position

One of c('start', 'end') indicating where to show the ind.names . Not used in block analyses, where centroids are used.

ind.names.size

Numeric, sample name size.

pch

plot character. A character string or a named vector of single characters or integers whose names match those of object$variates.

pch.size

Numeric, sample point character size.

arrow.alpha

Numeric between 0 and 1 determining the opacity of arrows.

arrow.size

Numeric, variable arrow head size.

arrow.length

Numeric, length of the arrow head in 'cm'.

legend

Logical, whether to show the legend if group != NULL.

legend.title

Character, the legend title if group != NULL.

...

Not currently used. sample size to display sample names.

Details

Graphical of the samples (individuals) is displayed in a superimposed manner where each sample will be indicated using an arrow. The start of the arrow indicates the location of the sample in X in one plot, and the tip the location of the sample in Y in the other plot. Short arrows indicate a strong agreement between the matching data sets, long arrows a disagreement between the matching data sets. The representation space is scaled using the range of coordinates so minimum and maximum values are equal for all blocks. Since the algorithm maximises the covariance of these components, the absolute values do not affect the alignment.

For objects of class "GCCA" and if there are more than 2 blocks, the start of the arrow indicates the centroid between all data sets for a given individual and the tips of the arrows the location of that individual in each block.

Value

A ggplot object

Author(s)

Al J Abadi

References

LĂȘ Cao, K.-A., Martin, P.G.P., Robert-Granie, C. and Besse, P. (2009). Sparse canonical methods for biological data integration: application to a cross-platform study. BMC Bioinformatics 10:34.

See Also

arrows, text, points and http://mixOmics.org/graphics for more details.

Examples


## plot of individuals for objects with two datasets only (X and Y)
# ----------------------------------------------------
data(nutrimouse)
X <- nutrimouse$lipid
Y <- nutrimouse$gene
nutri.res <- rcc(X, Y, ncomp = 3, lambda1 = 0.064, lambda2 = 0.008)

## plot of individuals for objects of class 'pls' or 'spls'
# ----------------------------------------------------
plotArrow(nutri.res)
## customise the ggplot object as you wish
plotArrow(nutri.res) + geom_vline(xintercept = 0, alpha = 0.5) + 
    geom_hline(yintercept = 0, alpha = 0.5) +
    labs(x = 'Dim 1' , y = 'Dim 2', title = 'Nutrimouse') +
    theme_minimal()
## individual name position
plotArrow(nutri.res, ind.names.position = 'end')
plotArrow(nutri.res, comp = c(1,3))
## custom pch
plotArrow(nutri.res, pch = 10, pch.size = 3)
plotArrow(nutri.res, pch = c(X = 1, Y = 0))
## custom arrow
plotArrow(nutri.res, arrow.alpha = 0.6, arrow.size = 0.6, arrow.length = 0.15)

## group samples
plotArrow(nutri.res, group = nutrimouse$genotype)
plotArrow(nutri.res, group = nutrimouse$genotype, legend.title = 'Genotype')

## custom ind.names
plotArrow(nutri.res,
           ind.names = paste0('ID', rownames(nutrimouse$gene)), 
           ind.names.size = 3)

## plot of individuals for objects of class 'pls' or 'spls'
# ----------------------------------------------------
data(liver.toxicity)
X <- liver.toxicity$gene
Y <- liver.toxicity$clinic
toxicity.spls <- spls(X, Y, ncomp = 3, keepX = c(50, 50, 50),
                      keepY = c(10, 10, 10))

# colors indicate time of necropsy, text is the dose, label at start of arrow
plotArrow(toxicity.spls,  group = liver.toxicity$treatment[, 'Time.Group'],
           ind.names  = liver.toxicity$treatment[, 'Dose.Group'],
           legend = TRUE, position.names = 'start', legend.title = 'Time.Group')

## individual representation for objects of class 'sgcca' (or 'rgcca')
# ----------------------------------------------------
data(nutrimouse)
Y = unmap(nutrimouse$diet)
data = list(gene = nutrimouse$gene, lipid = nutrimouse$lipid, Y = Y)
design1 = matrix(c(0,1,1,1,0,1,1,1,0), ncol = 3, nrow = 3, byrow = TRUE)
nutrimouse.sgcca <- wrapper.sgcca(X = data,
                                  design = design1,
                                  penalty = c(0.3, 0.5, 1),
                                  ncomp = 3,
                                  scheme = "centroid")

plotArrow(nutrimouse.sgcca, group = nutrimouse$genotype, ind.names = TRUE, 
           legend.title = 'Genotype' )

## custom pch by block
blocks <- names(nutrimouse.sgcca$variates)
pch <- seq_along(blocks)
names(pch) <- blocks
pch
#>   gene   lipid     Y 
#>   1       2        3 
p <- plotArrow(nutrimouse.sgcca, group = nutrimouse$genotype, ind.names = TRUE, 
           pch = pch, legend.title = 'Genotype')

p

### further customise the ggplot object
# custom labels
p + labs(x = 'Variate 1',
         y = 'Variate 2') +
    guides(
        shape = guide_legend(title = 'BLOCK')
    ) 
# TODO include these customisations into function args
## custom shapes
p + scale_shape_manual(values = c(
    centroid = 1,
    gene = 2,
    lipid = 3,
    Y = 4
))

## individual representation for objects of class 'sgccda'
# ----------------------------------------------------
# Note: the code differs from above as we use a 'supervised' GCCA analysis
data(nutrimouse)
Y = nutrimouse$diet
data = list(gene = nutrimouse$gene, lipid = nutrimouse$lipid)
design1 = matrix(c(0,1,0,1), ncol = 2, nrow = 2, byrow = TRUE)

nutrimouse.sgccda1 <- 
    wrapper.sgccda(X = data,
                   Y = Y,
                   design = design1,
                   ncomp = 2,
                   keepX = list(gene = c(10,10), lipid = c(15,15)),
                   scheme = "centroid")


## Default colours correspond to outcome Y
plotArrow(nutrimouse.sgccda1)


mixOmicsTeam/mixOmics documentation built on Nov. 4, 2024, 8:56 a.m.