# ========================================================================================================
# tune.mint.splsda: chose the optimal number of parameters per component on a mint.splsda method
# ========================================================================================================
#' Estimate the parameters of mint.splsda method
#'
#' Computes Leave-One-Group-Out-Cross-Validation (LOGOCV) scores on a
#' user-input grid to determine optimal values for the sparsity parameters in
#' \code{mint.splsda}.
#'
#' This function performs a Leave-One-Group-Out-Cross-Validation (LOGOCV),
#' where each of \code{study} is left out once. It returns a list of variables
#' of \code{X} that were selected on each of the \code{ncomp} components. Then,
#' a \code{\link{mint.splsda}} can be performed with \code{keepX} set as the
#' output \code{choice.keepX}.
#'
#' All component \eqn{1:\code{ncomp}} are tuned, except the first ones for
#' which a \code{already.tested.X} is provided. See examples below.
#'
#' The function outputs the optimal number of components that achieve the best
#' performance based on the overall error rate or BER. The assessment is
#' data-driven and similar to the process detailed in (Rohart et al., 2016),
#' where one-sided t-tests assess whether there is a gain in performance when
#' adding a component to the model. Our experience has shown that in most case,
#' the optimal number of components is the number of categories in \code{Y} -
#' 1, but it is worth tuning a few extra components to check (see our website
#' and case studies for more details).
#'
#' BER is appropriate in case of an unbalanced number of samples per class as
#' it calculates the average proportion of wrongly classified samples in each
#' class, weighted by the number of samples in each class. BER is less biased
#' towards majority classes during the performance assessment.
#'
#' More details about the prediction distances in \code{?predict} and the
#' supplemental material of the mixOmics article (Rohart et al. 2017).
#'
#' @param X numeric matrix of predictors. \code{NA}s are allowed.
#' @param Y Outcome. Numeric vector or matrix of responses (for multi-response
#' models)
#' @param ncomp Number of components to include in the model (see Details).
#' Default to 1
#' @param study grouping factor indicating which samples are from the same
#' study
#' @param test.keepX numeric vector for the different number of variables to
#' test from the \eqn{X} data set
#' @param already.tested.X if \code{ncomp > 1} Numeric vector indicating the
#' number of variables to select from the \eqn{X} data set on the firsts
#' components
#' @param dist only applies to an object inheriting from \code{"plsda"} or
#' \code{"splsda"} to evaluate the classification performance of the model.
#' Should be a subset of \code{"max.dist"}, \code{"centroids.dist"},
#' \code{"mahalanobis.dist"}. Default is \code{"all"}. See
#' \code{\link{predict}}.
#' @param measure Two misclassification measure are available: overall
#' misclassification error \code{overall} or the Balanced Error Rate \code{BER}
#' @param auc if \code{TRUE} calculate the Area Under the Curve (AUC)
#' performance of the model.
#' @param progressBar by default set to \code{TRUE} to output the progress bar
#' of the computation.
#' @param scale Logical. If scale = TRUE, each block is standardized to zero
#' means and unit variances (default: TRUE)
#' @param tol Convergence stopping value.
#' @param max.iter integer, the maximum number of iterations.
#' @param near.zero.var Logical, see the internal \code{\link{nearZeroVar}}
#' function (should be set to TRUE in particular for data with many zero
#' values). Default value is FALSE
#' @param light.output if set to FALSE, the prediction/classification of each
#' sample for each of \code{test.keepX} and each comp is returned.
#' @param signif.threshold numeric between 0 and 1 indicating the significance
#' threshold required for improvement in error rate of the components. Default
#' to 0.01.
#' @return The returned value is a list with components:
#' \item{error.rate}{returns the prediction error for each \code{test.keepX} on
#' each component, averaged across all repeats and subsampling folds. Standard
#' deviation is also output. All error rates are also available as a list.}
#' \item{choice.keepX}{returns the number of variables selected (optimal keepX)
#' on each component.} \item{choice.ncomp}{returns the optimal number of
#' components for the model fitted with \code{$choice.keepX} }
#' \item{error.rate.class}{returns the error rate for each level of \code{Y}
#' and for each component computed with the optimal keepX}
#'
#' \item{predict}{Prediction values for each sample, each \code{test.keepX} and
#' each comp.} \item{class}{Predicted class for each sample, each
#' \code{test.keepX} and each comp.}
#' @author Florian Rohart, Al J Abadi
#' @seealso \code{\link{mint.splsda}} and http://www.mixOmics.org for more
#' details.
#' @references Rohart F, Eslami A, Matigian, N, Bougeard S, Lê Cao K-A (2017).
#' MINT: A multivariate integrative approach to identify a reproducible
#' biomarker signature across multiple experiments and platforms. BMC
#' Bioinformatics 18:128.
#'
#' mixOmics article:
#'
#' Rohart F, Gautier B, Singh A, Lê Cao K-A. mixOmics: an R package for 'omics
#' feature selection and multiple data integration. PLoS Comput Biol 13(11):
#' e1005752
#' @keywords multivariate dplot
#' @export
#' @examples
#' data(stemcells)
#' data = stemcells$gene
#' type.id = stemcells$celltype
#' exp = stemcells$study
#'
#' res = mint.splsda(X=data,Y=type.id,ncomp=3,keepX=c(10,5,15),study=exp)
#' out = tune.mint.splsda(X=data,Y=type.id,ncomp=2,near.zero.var=FALSE,
#' study=exp,test.keepX=seq(1,10,1))
#'
#' out$choice.ncomp
#' out$choice.keepX
#'
#' \dontrun{
#'
#' out = tune.mint.splsda(X=data,Y=type.id,ncomp=2,near.zero.var=FALSE,
#' study=exp,test.keepX=seq(1,10,1))
#' out$choice.keepX
#'
#' ## only tune component 2 and keeping 10 genes on comp1
#' out = tune.mint.splsda(X=data,Y=type.id,ncomp=2, study=exp,
#' already.tested.X = c(10),
#' test.keepX=seq(1,10,1))
#' out$choice.keepX
#'
#' }
tune.mint.splsda <-
function (X,
Y,
ncomp = 1,
study,
test.keepX = c(5, 10, 15),
already.tested.X,
dist = c("max.dist", "centroids.dist", "mahalanobis.dist"),
measure = c("BER", "overall"),
auc = FALSE,
progressBar = FALSE,
scale = TRUE,
tol = 1e-06,
max.iter = 100,
near.zero.var = FALSE,
light.output = TRUE, # if FALSE, output the prediction and classification of each sample during each folds, on each comp, for each repeat
signif.threshold=0.01
)
{
#-- checking general input parameters --------------------------------------#
#---------------------------------------------------------------------------#
#------------------#
#-- check entries --#
if(missing(X))
stop("'X'is missing", call. = FALSE)
X = as.matrix(X)
if (length(dim(X)) != 2 || !is.numeric(X))
stop("'X' must be a numeric matrix.", call. = FALSE)
# Testing the input Y
if(missing(Y))
stop("'Y'is missing", call. = FALSE)
if (is.null(Y))
stop("'Y' has to be something else than NULL.", call. = FALSE)
if (is.null(dim(Y)))
{
Y = factor(Y)
} else {
stop("'Y' should be a factor or a class vector.", call. = FALSE)
}
if (nlevels(Y) == 1)
stop("'Y' should be a factor with more than one level", call. = FALSE)
#-- check significance threshold
signif.threshold <- .check_alpha(signif.threshold)
#-- progressBar
if (!is.logical(progressBar))
stop("'progressBar' must be a logical constant (TRUE or FALSE).", call. = FALSE)
if (is.null(ncomp) || !is.numeric(ncomp) || ncomp <= 0)
stop("invalid number of variates, 'ncomp'.")
#-- measure
measure <- match.arg(measure)
#if ((!is.null(already.tested.X)) && (length(already.tested.X) != (ncomp - 1)) )
#stop("The number of already tested parameters should be NULL or ", ncomp - 1, " since you set ncomp = ", ncomp)
if (missing(already.tested.X))
{
already.tested.X = NULL
} else {
if(is.list(already.tested.X))
stop("''already.tested.X' must be a vector of keepX values")
message(paste("Number of variables selected on the first", length(already.tested.X), "component(s):", paste(already.tested.X,collapse = " ")))
}
if(length(already.tested.X) >= ncomp)
stop("'ncomp' needs to be higher than the number of components already tuned, which is length(already.tested.X)=",length(already.tested.X) , call. = FALSE)
# -- check using the check of mint.splsda
Y.mat = unmap(Y)
colnames(Y.mat) = levels(Y)
check = Check.entry.pls(X, Y = Y.mat, ncomp = ncomp, mode="regression", scale=scale,
near.zero.var=near.zero.var, max.iter=max.iter ,tol=tol ,logratio="none" ,DA=TRUE, multilevel=NULL)
X = check$X
ncomp = check$ncomp
# -- study
#set the default study factor
if (missing(study))
stop("'study' is missing", call. = FALSE)
if (length(study) != nrow(X))
stop(paste0("'study' must be a factor of length ",nrow(X),"."))
if (any(table(study) <= 1))
stop("At least one study has only one sample, please consider removing before calling the function again", call. = FALSE)
if (any(table(study) < 5))
warning("At least one study has less than 5 samples, mean centering might not do as expected")
if(sum(apply(table(Y,study)!=0,2,sum)==1) >0)
stop("At least one study only contains a single level of the multi-levels outcome Y. The MINT algorithm cannot be computed.")
if(sum(apply(table(Y,study)==0,2,sum)>0) >0)
warning("At least one study does not contain all the levels of the outcome Y. The MINT algorithm might not perform as expected.")
#-- dist
dist = match.arg(dist)
#-- light.output
if (!is.logical(light.output))
stop("'light.output' must be either TRUE or FALSE", call. = FALSE)
#-- test.keepX
if (is.null(test.keepX) | length(test.keepX) == 1 | !is.numeric(test.keepX))
stop("'test.keepX' must be a numeric vector with more than two entries", call. = FALSE)
#-- end checking --#
#------------------#
#-- cross-validation approach ---------------------------------------------#
#---------------------------------------------------------------------------#
test.keepX = sort(test.keepX) #sort test.keepX so as to be sure to chose the smallest in case of several minimum
# if some components have already been tuned (eg comp1 and comp2), we're only tuning the following ones (comp3 comp4 .. ncomp)
if ((!is.null(already.tested.X)))
{
comp.real = (length(already.tested.X) + 1):ncomp
} else {
comp.real = 1:ncomp
}
mat.error = matrix(nrow = length(test.keepX), ncol = 1,
dimnames = list(test.keepX,1))
rownames(mat.error) = test.keepX
error.per.class = list()
mat.sd.error = matrix(0,nrow = length(test.keepX), ncol = ncomp-length(already.tested.X),
dimnames = list(c(test.keepX), c(paste0('comp', comp.real))))
mat.mean.error = matrix(nrow = length(test.keepX), ncol = ncomp-length(already.tested.X),
dimnames = list(c(test.keepX), c(paste0('comp', comp.real))))
error.per.class.mean = matrix(nrow = nlevels(Y), ncol = ncomp-length(already.tested.X),
dimnames = list(c(levels(Y)), c(paste0('comp', comp.real))))
error.per.class.sd = matrix(0,nrow = nlevels(Y), ncol = ncomp-length(already.tested.X),
dimnames = list(c(levels(Y)), c(paste0('comp', comp.real))))
error.per.study.keepX.opt = matrix(nrow = nlevels(study), ncol = ncomp-length(already.tested.X),
dimnames = list(c(levels(study)), c(paste0('comp', comp.real))))
if(light.output == FALSE)
prediction.all = class.all = list()
if(auc)
auc.mean=list()
error.per.class.keepX.opt=list()
# successively tune the components until ncomp: comp1, then comp2, ...
for(comp in 1:length(comp.real))
{
if (progressBar == TRUE)
cat("\ncomp",comp.real[comp], "\n")
result = LOGOCV (X, Y, ncomp = 1 + length(already.tested.X), study = study,
choice.keepX = already.tested.X,
test.keepX = test.keepX, measure = measure,
dist = dist, near.zero.var = near.zero.var, progressBar = progressBar, scale = scale, max.iter = max.iter, auc = auc)
# in the following, there is [[1]] because 'tune' is working with only 1 distance and 'MCVfold.spls' can work with multiple distances
mat.mean.error[, comp]=result[[measure]]$error.rate.mean[[1]]
if (!is.null(result[[measure]]$error.rate.sd[[1]]))
mat.sd.error[, comp]=result[[measure]]$error.rate.sd[[1]]
# confusion matrix for keepX.opt
error.per.class.keepX.opt[[comp]]=result[[measure]]$confusion[[1]]
# best keepX
already.tested.X = c(already.tested.X, result[[measure]]$keepX.opt[[1]])
# error per study for keepX.opt
error.per.study.keepX.opt[,comp] = result[[measure]]$error.per.study.keepX.opt[[1]]
if(light.output == FALSE)
{
#prediction of each samples for each fold and each repeat, on each comp
class.all[[comp]] = result$class.comp[[1]]
prediction.all[[comp]] = result$prediction.comp
}
if(auc)
auc.mean[[comp]]=result$auc
} # end comp
names(error.per.class.keepX.opt) = c(paste0('comp', comp.real))
names(already.tested.X) = c(paste0('comp', 1:ncomp))
if (progressBar == TRUE)
cat('\n')
# calculating the number of optimal component based on t.tests and the error.rate.all, if more than 3 error.rates(repeat>3)
if(nlevels(study) > 2 & length(comp.real) >1)
{
opt = t.test.process(error.per.study.keepX.opt, alpha=signif.threshold)
ncomp_opt = comp.real[opt]
} else {
ncomp_opt = NULL
}
result = list(
error.rate = mat.mean.error,
choice.keepX = already.tested.X,
choice.ncomp = list(ncomp = ncomp_opt, values = error.per.study.keepX.opt),
error.rate.class = error.per.class.keepX.opt)
if(auc)
{
names(auc.mean) = c(paste0('comp', comp.real))
result$auc = auc.mean
}
if(light.output == FALSE)
{
names(class.all) = names(prediction.all) = c(paste0('comp', comp.real))
result$predict = prediction.all
result$class = class.all
}
result$measure = measure
result$call = match.call()
class(result) = c("tune.mint.splsda","tune.splsda")
return(result)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.