R/splsda.R

Defines functions splsda

Documented in splsda

# ========================================================================================================
# splsda: perform a sPLS-DA
# this function is a particular setting of internal_mint.block, the formatting of the input is checked in internal_wrapper.mint
# ========================================================================================================

#' Sparse Partial Least Squares Discriminant Analysis (sPLS-DA)
#' 
#' Function to perform sparse Partial Least Squares to classify samples
#' (supervised analysis) and select variables.
#' 
#' \code{splsda} function fits an sPLS model with \eqn{1, \ldots ,}\code{ncomp}
#' components to the factor or class vector \code{Y}. The appropriate indicator
#' (dummy) matrix is created. 
#' 
#' Logratio transformation and multilevel analysis are
#' performed sequentially as internal pre-processing step, through
#' \code{\link{logratio.transfo}} and \code{\link{withinVariation}}
#' respectively. Logratio can only be applied if the data do not contain any 0 value (for
#' count data, we thus advise the normalise raw data with a 1 offset).
#' 
#' The type of deflation used is \code{'regression'} for discriminant algorithms.
#' i.e. no deflation is performed on Y.
#' 
#' @inheritParams plsda
#' @inheritParams spls
#' 
#' @return \code{splsda} returns an object of class \code{"splsda"}, a list
#' that contains the following components:
#' 
#' \item{X}{the centered and standardized original predictor matrix.}
#' \item{Y}{the centered and standardized indicator response vector or matrix.}
#' \item{ind.mat}{the indicator matrix.} \item{ncomp}{the number of components
#' included in the model.} \item{keepX}{number of \eqn{X} variables kept in the
#' model on each component.} \item{variates}{list containing the variates.}
#' \item{loadings}{list containing the estimated loadings for the \code{X} and
#' \code{Y} variates.} \item{names}{list containing the names to be used for
#' individuals and variables.} \item{nzv}{list containing the zero- or
#' near-zero predictors information.} \item{tol}{the tolerance used in the
#' iterative algorithm, used for subsequent S3 methods} \item{iter}{Number of
#' iterations of the algorithm for each component} \item{max.iter}{the maximum
#' number of iterations, used for subsequent S3 methods} \item{scale}{Logical
#' indicating whether the data were scaled in MINT S3 methods}
#' \item{logratio}{whether logratio transformations were used for compositional
#' data} \item{prop_expl_var}{Proportion of variance explained per
#' component after setting possible missing values in the data to zero (note
#' that contrary to PCA, this amount may not decrease as the aim of the method
#' is not to maximise the variance, but the covariance between X and the
#' dummy matrix Y).} \item{mat.c}{matrix of coefficients from the regression of
#' X / residual matrices X on the X-variates, to be used internally by
#' \code{predict}.} \item{defl.matrix}{residual matrices X for each dimension.}
#' @author Florian Rohart, Ignacio González, Kim-Anh Lê Cao, Al J abadi
#' @seealso \code{\link{spls}}, \code{\link{summary}}, \code{\link{plotIndiv}},
#' \code{\link{plotVar}}, \code{\link{cim}}, \code{\link{network}},
#' \code{\link{predict}}, \code{\link{perf}}, \code{\link{mint.block.splsda}},
#' \code{\link{block.splsda}} and http://www.mixOmics.org for more details.
#' @references On sPLS-DA: Lê Cao, K.-A., Boitard, S. and Besse, P. (2011).
#' Sparse PLS Discriminant Analysis: biologically relevant feature selection
#' and graphical displays for multiclass problems. \emph{BMC Bioinformatics}
#' \bold{12}:253. On log ratio transformations: Filzmoser, P., Hron, K.,
#' Reimann, C.: Principal component analysis for compositional data with
#' outliers. Environmetrics 20(6), 621-632 (2009) Lê Cao K.-A., Costello ME,
#' Lakis VA, Bartolo, F,Chua XY, Brazeilles R, Rondeau P. MixMC: Multivariate
#' insights into Microbial Communities. PLoS ONE, 11(8): e0160169 (2016). On
#' multilevel decomposition: Westerhuis, J.A., van Velzen, E.J., Hoefsloot,
#' H.C., Smilde, A.K.: Multivariate paired data analysis: multilevel plsda
#' versus oplsda. Metabolomics 6(1), 119-128 (2010) Liquet, B., Lê Cao K.-A.,
#' Hocini, H., Thiebaut, R.: A novel approach for biomarker selection and the
#' integration of repeated measures experiments from two assays. BMC
#' bioinformatics 13(1), 325 (2012)
#' @keywords regression multivariate
#' @export
#' @example ./examples/splsda-examples.R
splsda <- function(X,
                   Y,
                   ncomp = 2,
                   keepX,
                   scale = TRUE,
                   tol = 1e-06,
                   max.iter = 100,
                   near.zero.var = FALSE,
                   logratio = "none",
                   # one of "none", "CLR"
                   multilevel = NULL,
                   all.outputs = TRUE)
{
    
    
    
    #-- validation des arguments --#
    # most of the checks are done in the wrapper.mint.spls.hybrid function
    if(is.null(multilevel))
    {
        if (is.null(Y))
            stop("'Y' has to be something else than NULL.")
        
        if (is.null(dim(Y)))
        {
            Y = factor(Y)
        }  else {
            stop("'Y' should be a factor or a class vector.")
        }
        
        if (nlevels(Y) == 1)
            stop("'Y' should be a factor with more than one level")
        
        Y.mat = unmap(Y)
        colnames(Y.mat) = levels(Y)#paste0("Y", 1:ncol(Y.mat))
    }else{
        # we expect a vector or a 2-columns matrix in 'Y' and the repeated measurements in 'multilevel'
        multilevel = data.frame(multilevel)
        
        if ((nrow(X) != nrow(multilevel)))
            stop("unequal number of rows in 'X' and 'multilevel'.")
        
        if (ncol(multilevel) != 1)
            stop("'multilevel' should have a single column for the repeated measurements, other factors should be included in 'Y'.")
        
        if (!is.null(ncol(Y)) && !ncol(Y) %in% c(0,1,2))# multilevel 1 or 2 factors
            stop("'Y' should either be a factor, a single column data.frame containing a factor, or a 2-columns data.frame containing 2 factors.")
        
        multilevel = data.frame(multilevel, Y)
        multilevel[, 1] = as.numeric(factor(multilevel[, 1])) # we want numbers for the repeated measurements
        
        Y.mat = NULL
    }
    
    # call to 'internal_wrapper.mint'
    result = internal_wrapper.mint(
        X = X,
        Y = Y.mat,
        ncomp = ncomp,
        scale = scale,
        near.zero.var = near.zero.var,
        mode = 'regression',
        keepX = keepX,
        max.iter = max.iter,
        tol = tol,
        logratio = logratio,
        multilevel = multilevel,
        DA = TRUE,
        all.outputs = all.outputs,
        remove.object = c("X")
    )
    
    
    # choose the desired output from 'result'
    out = list(
        call = match.call(),
        X = result$A[-result$indY][[1]],
        Y = if (is.null(multilevel))
        {
            Y
        } else {
            result$Y.factor
        },
        ind.mat = result$A[result$indY][[1]],
        ncomp = result$ncomp,
        mode = result$mode,
        keepA = result$keepA,
        keepX = result$keepX,
        keepY = result$keepY,
        variates = result$variates,
        loadings = result$loadings,
        loadings.star = result$loadings.star,
        names = result$names,
        tol = result$tol,
        iter = result$iter,
        max.iter = result$max.iter,
        nzv = result$nzv,
        scale = scale,
        logratio = logratio,
        prop_expl_var = result$prop_expl_var,
        input.X = result$input.X,
        mat.c = result$mat.c
    )
    
    class(out) = c("mixo_splsda","mixo_spls","DA")
    # output if multilevel analysis
    if (!is.null(multilevel))
    {
        out$multilevel = multilevel
        class(out) = c("mixo_mlsplsda",class(out))
    }
    
    return(invisible(out))
}
mixOmicsTeam/mixOmics documentation built on Nov. 4, 2024, 8:56 a.m.