R/plotIndiv.mint.R

Defines functions plotIndiv.mint.pls

Documented in plotIndiv.mint.pls

#----------------------------------------------------------------------------------------------------------#
#-- Includes plotIndiv for the MINT module --#
#----------------------------------------------------------------------------------------------------------#
#' @rdname plotIndiv
#' @method plotIndiv mint.pls
#' @export
plotIndiv.mint.pls <- 
    function(object,
             comp = NULL,
             study = "global",
             rep.space = c("X-variate","XY-variate", "Y-variate", "multi"),
             group,
             # factor indicating the group membership for each sample, useful for ellipse plots. Coded as default for the -da methods, but needs to be input for the unsupervised methods (PCA, IPCA...)
             col.per.group,
             style = "ggplot2",
             # can choose between graphics, lattice or ggplot2
             ellipse = FALSE,
             ellipse.level = 0.95,
             centroid = FALSE,
             star = FALSE,
             title = NULL,
             subtitle,
             legend = FALSE,
             X.label = NULL,
             Y.label = NULL,
             abline = FALSE,
             xlim = NULL,
             ylim = NULL,
             col,
             cex,
             pch,
             layout = NULL,
             size.title = rel(2),
             size.subtitle = rel(1.5),
             size.xlabel = rel(1),
             size.ylabel = rel(1),
             size.axis = rel(0.8),
             size.legend = rel(1),
             size.legend.title = rel(1.1),
             legend.title = "Legend",
             legend.position = "right",
             point.lwd = 1,
             background = NULL,
             ...
             
    )
    {
        plot_parameters = list(
            size.title = size.title,
            size.subtitle = size.subtitle,
            size.xlabel = size.xlabel,
            size.ylabel = size.ylabel,
            size.axis = size.axis,
            size.legend = size.legend,
            size.legend.title = size.legend.title,
            legend.title = legend.title,
            legend.position = legend.position,
            point.lwd = point.lwd
        )
        
        
        if (any(class(object)%in%c("mint.block.pls", "mint.block.spls", "mint.block.plsda", "mint.block.splsda")))
            stop("No plotIndiv for the following functions at this stage: mint.block.pls, mint.block.spls, mint.block.plsda, mint.block.splsda.")
        
        
        #-- rep.space
        rep.space <- match.arg(rep.space)
        
        ind.names = FALSE
        # --------------------------------------------------------------------------------------
        #           need study
        # --------------------------------------------------------------------------------------
        
        # check study
        #study needs to be either: from levels(object$study), numbers from 1:nlevels(study) or "global"
        if (any(!study%in%c(levels(object$study), "global" , "all.partial")))
            stop("'study' must be one of 'object$study', 'global' or 'all.partial', see help file.")
        
        if (length(study)!=length(unique(study)))
            stop("Duplicate in 'study' not allowed")
        
        if (any(study != "global"))
        {
            if (ellipse == TRUE)
                stop("'ellipse' must be FALSE when study is different from 'global'")
            
            if (star == TRUE)
                stop("'star' must be FALSE when study is different from 'global'")
        }
        
        
        #LOOP ON STUDY, to get a plot with every single one, could be a mixed of numbers and "global", only if there is both "global" and something else.
        
        object.init = object
        study.init = unique(study)
        
        # replace "all.partial" by all levels of object$study
        ind.all.partial = which(study.init == "all.partial")
        if (length(ind.all.partial) > 0)
        {
            if (ind.all.partial > 1 & ind.all.partial < length(study.init))
            {
                # there are things before and after "all.partial"
                study.init = c(study.init[1:(ind.all.partial-1)], levels(object$study), study.init[(ind.all.partial+1) : length(study.init)])
            } else if (ind.all.partial == 1 & ind.all.partial < length(study.init)) {
                # there are only things after "all.partial"
                study.init = c(levels(object$study), study.init[(ind.all.partial+1) : length(study.init)])
            } else if (ind.all.partial > 1 & ind.all.partial == length(study.init)) {
                # there are things only before "all.partial"
                study.init = c(study.init[1:(ind.all.partial-1)], levels(object$study))
            } else if (ind.all.partial == 1 & ind.all.partial == length(study.init)) {
                # there's only "all.partial"
                study.init = levels(object$study)
            }
        }
        
        study.init = unique(study.init) #once again cause we added studies if "all.partial"
        
        if (!missing(subtitle))
        {
            if (length(subtitle)!=length(study.init)| length(subtitle)!=length(unique(subtitle)))
                stop("'subtitle' indicates the subtitle of the plot for each study and it needs to be the same length as 'study' (", length(study.init),") and duplicate are not allowed. 'study' includes: ", paste(study.init, collapse = ", "))
        }
        
        df.final = data.frame()
        
        indice.all = grep("global", study.init) # can go faster before and after "global"
        if (length(indice.all)>0)
        {
            study.list = list()
            i = 1
            if (indice.all>1)
            {
                study.list[[1]] = study.init[1:(indice.all-1)]
                i = i+1
            }
            
            study.list[[i]] = study.init[indice.all]
            
            if (indice.all<length(study.init))
                study.list[[i+1]] = study.init[-(1:indice.all)]
        } else {
            study.list = list(study.init)
        }
        
        
        # the following loop consider subset of studies all together, up until "global", and subset of studies after "global"
        for (length.study in 1 : length(study.list))
        {
            object = object.init #reinitialise $variates
            study = study.list[[length.study]]
            
            #-- define 'blocks'
            if (any(study == "global"))
            {
                # can plot both X and Y when one study or when study="global"
                # same as class.object==pls
                
                if (rep.space == "multi")
                {
                    blocks = c("X", "Y")
                    object$variates = object$variates[names(object$variates) %in% blocks]
                }
                
                if (rep.space == "X-variate")
                {
                    object$variates = object$variates["X"]
                    blocks = "X"
                }
                
                if (rep.space == "Y-variate")
                {
                    object$variates = object$variates["Y"]
                    blocks = "Y"
                }
                
                if (rep.space == "XY-variate")
                {
                    object$variates$XYvariates = (object$variates$X + object$variates$Y)/2
                    object$variates = object$variates["XYvariates"]
                    blocks = "XY combined"
                }
                
            } else if (length(study) == 1) {
                # can plot only X, Y or XY variate when more than one study
                # can plot both X and Y when one study or when study="global"
                
                blocks = c("X", "Y")
                
                if (rep.space == "X-variate")
                    blocks = "X"
                
                if (rep.space == "Y-variate")
                    blocks = "Y"
                
                #extract variates for each "blocks" for "study"
                object$variates = lapply(object$variates.partial, function(x){x[[study]]})[names(object$variates) %in% blocks]
                
                #if XY-variate, combine the previous variates (relative to "blocks" and "study")
                if (rep.space == "XY-variate")
                {
                    object$variates$XYvariates = (object$variates$X + object$variates$Y)/2
                    object$variates = object$variates["XYvariates"]
                    blocks = "XY combined"
                }
                blocks.init = blocks #save for "internal_getVariatesAndLabels"
                blocks = study
                
                
            } else { #length(study)>1
                
                blocks = c("X", "Y")
                
                if (rep.space == "multi")
                {
                    rep.space = "X-variate"
                    warning("More than one study is plotted, 'rep.space' is set to 'X-variate'. Alternatively, you can input 'Y-variate'")
                }
                
                if (rep.space == "X-variate")
                    blocks = "X"
                
                if (rep.space == "Y-variate")
                    blocks = "Y"
                
                
                #extract variates for each "blocks" for "study"
                object$variates = lapply(object$variates.partial, function(x)
                {
                    out = lapply(study, function(y){x[[y]]})
                    names(out) = study
                    out
                })[names(object$variates) %in% blocks]#[[1]]
                
                #if XY-variate, combine the previous variates (relative to "blocks" and "study")
                if (rep.space == "XY-variate")
                {
                    for (i in 1:length(object$variates$X))
                        object$variates$XYvariates[[i]] = (object$variates$X[[i]]+object$variates$Y[[i]])/2
                    
                    names(object$variates$XYvariates) = names(object$variates$X)
                    object$variates = object$variates[["XYvariates"]]
                } else {
                    object$variates = object$variates[[1]] # get rid of the $X or $Y
                }
                
                # blocks becomes study, so each study is plotted
                blocks = study
                object$names$sample = lapply(object$variates, rownames)
                ellipse = FALSE
                star = FALSE
                centroid = FALSE
            }
            
            #-- check inputs
            # check style as we do not do 3d at the moment:
            if (!style %in% c("ggplot2", "lattice", "graphics"))
                stop("'style' must be one of 'ggplot2', 'lattice' or 'graphics'.",
                     call. = FALSE)
            
            check = check.input.plotIndiv(
                object = object,
                comp = comp,
                blocks = blocks,
                ind.names = ind.names,
                style = style,
                ellipse = ellipse,
                ellipse.level = ellipse.level,
                centroid = centroid,
                star = star,
                legend = legend,
                X.label = X.label,
                Y.label = Y.label,
                abline = abline,
                xlim = xlim,
                ylim = ylim,
                plot_parameters = plot_parameters
            )
            #-- retrieve some outputs from the checks
            comp = check$comp
            xlim = check$xlim
            ylim = check$ylim
            ind.names = check$ind.names
            display.names = FALSE#check$display.names
            
            
            #-- get the variates
            variate = internal_getVariatesAndLabels(
                object,
                comp,
                blocks.init = blocks.init,
                blocks = blocks,
                rep.space = rep.space,
                style = style,
                X.label = X.label,
                Y.label = Y.label,
                Z.label = NULL
            )
            #-- retrieve outputs
            x = variate$x
            y = variate$y
            z = variate$z
            X.label = variate$X.label #only the last one of the loop is used
            Y.label = variate$Y.label #only the last one of the loop is used
            
            n = nrow(object$X)
            
            # create data frame df that contains (almost) all the ploting information
            out = shape.input.plotIndiv(
                object = object,
                n = n,
                blocks = blocks,
                x = x,
                y = y,
                z = z,
                ind.names = ind.names,
                group = group,
                col.per.group = col.per.group,
                style = style,
                study = study,
                ellipse = ellipse,
                ellipse.level = ellipse.level,
                centroid = centroid,
                star = star,
                title = title,
                xlim = xlim,
                ylim = ylim,
                col = col,
                cex = cex,
                pch = pch,
                display.names = display.names,
                plot_parameters = plot_parameters
            )
            #-- retrieve outputs
            df = out$df
            df.ellipse = out$df.ellipse
            col.per.group = out$col.per.group
            title = out$title
            display.names = out$display.names
            xlim = out$xlim
            ylim = out$ylim
            #missing.col = out$missing.col
            plot_parameters = out$plot_parameters
            
            #save(list=ls(),file="temp.Rdata")
            # concatenate results
            df.final = rbind(df.final, df)
        }
        # add study information on df.final, for pch legend
        study.levels = study.init[which(!study.init == "global")]
        if (any(study.init == "global"))
            study.levels = levels(object$study)
        
        
        # change the levels of df.final$Block to "subtitle"
        if (!missing(subtitle))
        {
            df.final$Block = factor(df.final$Block, labels = subtitle)
            
            if (ellipse)
                df.ellipse$Block = factor(df.ellipse$Block, labels = subtitle)
        }
        df = df.final
        
        if (style == "ggplot2") {
            style = "ggplot2-MINT"
        }

        if(!is.null(background)) {
            ind.match = match(names(background), levels(df$group))
            names(background) = adjustcolor(col.per.group[ind.match],alpha.f=0.1)

            # we choose xlim/ylim that fits the points and the background by finding the
            # average between the extremes of the two. 
            # 0.5 then added to min of the lim to prevent any uncoloured area showing
            bg.tmp <- (do.call("rbind", background))
            if(is.null(xlim))
                xlim <- (range(df$x) + range(bg.tmp[, "Var1"]))/2 + c(0.5, 0)
            if(is.null(ylim))
                ylim <- (range(df$y) + range(bg.tmp[, "Var2"]))/2 + c(0.5, 0)
            rm(bg.tmp)
        }
        

        
        
        #call plot module (ggplot2, lattice, graphics, 3d)
        res = internal_graphicModule(
            df = df,
            centroid = centroid,
            col.per.group = col.per.group,
            title = title,
            X.label = X.label,
            Y.label = Y.label,
            xlim = xlim,
            ylim = ylim,
            class.object = class(object),
            display.names = display.names,
            legend = legend,
            abline = abline,
            star = star,
            ellipse = ellipse,
            df.ellipse = df.ellipse,
            style = style,
            layout = layout,
            background = background,
            #missing.col = missing.col,
            #for ggplot2-MINT
            study.levels = study.levels,
            plot_parameters = plot_parameters
        )
        
        return(invisible(list(df = df, graph = res)))
    }

#' @rdname plotIndiv
#' @method plotIndiv mint.spls
#' @export
plotIndiv.mint.spls <- plotIndiv.mint.pls

#' @rdname plotIndiv
#' @method plotIndiv mint.plsda
#' @export
plotIndiv.mint.plsda <- plotIndiv.mint.pls

#' @rdname plotIndiv
#' @method plotIndiv mint.splsda
#' @export
plotIndiv.mint.splsda <- plotIndiv.mint.pls
mixOmicsTeam/mixOmics documentation built on Nov. 4, 2024, 8:56 a.m.