#' @importFrom jmvcore .
linRegClass <- R6::R6Class(
"linRegClass",
inherit = linRegBase,
#### Active bindings ----
active = list(
dataProcessed = function() {
if (is.null(private$.dataProcessed))
private$.dataProcessed <- private$.cleanData()
return(private$.dataProcessed)
},
weights = function() {
if (is.null(private$.weights))
private$.weights <- private$.computeWeights()
return(private$.weights)
},
models = function() {
if (is.null(private$.models))
private$.models <- private$.computeModels()
return(private$.models)
},
modelsScaled = function() {
if (is.null(private$.modelsScaled))
private$.modelsScaled <- private$.computeModels(scaled = TRUE)
return(private$.modelsScaled)
},
nModels = function() {
if (is.null(private$.nModels))
private$.nModels <- length(self$options$blocks)
return(private$.nModels)
},
residuals = function() {
if (is.null(private$.residuals))
private$.residuals <- private$.computeResiduals()
return(private$.residuals)
},
fitted = function() {
if (is.null(private$.fitted))
private$.fitted <- private$.computeFitted()
return(private$.fitted)
},
predicted = function() {
if (is.null(private$.predicted))
private$.predicted <- private$.computePredicted()
return(private$.predicted)
},
cooks = function() {
if (is.null(private$.cooks))
private$.cooks <- private$.computeCooks()
return(private$.cooks)
},
mahal = function() {
if (is.null(private$.mahal))
private$.mahal <- private$.computeMahal()
return(private$.mahal)
},
anovaModelComparison = function() {
if (is.null(private$.anovaModelComparison))
private$.anovaModelComparison <- do.call(stats::anova, self$models)
return(private$.anovaModelComparison)
},
anovaModelTerms = function() {
if (is.null(private$.anovaModelTerms))
private$.anovaModelTerms <- private$.computeAnovaModelTerms()
return(private$.anovaModelTerms)
},
AIC = function() {
if (is.null(private$.AIC))
private$.AIC <- private$.computeAIC()
return(private$.AIC)
},
BIC = function() {
if (is.null(private$.BIC))
private$.BIC <- private$.computeBIC()
return(private$.BIC)
},
CICoefEst = function() {
if (is.null(private$.CICoefEst))
private$.CICoefEst <- private$.computeCICoefEst()
return(private$.CICoefEst)
},
CICoefEstScaled = function() {
if (is.null(private$.CICoefEstScaled))
private$.CICoefEstScaled <- private$.computeCICoefEst(scaled = TRUE)
return(private$.CICoefEstScaled)
},
VIF = function() {
if (is.null(private$.VIF))
private$.VIF <- private$.computeVIF()
return(private$.VIF)
},
durbinWatson = function() {
if (is.null(private$.durbinWatson))
private$.durbinWatson <- private$.computeDurbinWatson()
return(private$.durbinWatson)
},
emMeans = function() {
if (is.null(private$.emMeans))
private$.emMeans <- private$.computeEmMeans()
return(private$.emMeans)
},
refLevels = function() {
if (is.null(private$.refLevels)) {
refLevels <- getReferenceLevels(
self$data, self$options$factors, self$options$refLevels
)
private$.refLevels <- refLevels$refLevels
if (length(refLevels$changedVars) > 0)
setRefLevelWarning(self, refLevels$changedVars)
}
return(private$.refLevels)
}
),
private = list(
#### Member variables ----
.dataProcessed = NULL,
.dataRowNums = NULL,
.weights = NULL,
.models = NULL,
.modelsScaled = NULL,
.isAliased = NULL,
.nModels = NULL,
.residuals = NULL,
.fitted = NULL,
.predicted = NULL,
.cooks = NULL,
.mahal = NULL,
.anovaModelComparison = NULL,
.anovaModelTerms = NULL,
.AIC = NULL,
.BIC = NULL,
.CICoefEst = NULL,
.CICoefEstScaled = NULL,
.VIF = NULL,
.durbinWatson = NULL,
.modelTerms = NULL,
.rowNamesModel = NULL,
.emMeans = NULL,
.emMeansForPlot = NULL,
.refLevels = NULL,
#### Init + run functions ----
.init = function() {
private$.initModelFitTable()
private$.initModelCompTable()
private$.initModelSpec()
private$.initAnovaTables()
private$.initCoefTable()
private$.initCollinearityTable()
private$.initResPlots()
private$.initEmm()
private$.initEmmTable()
private$.initOutputs()
},
.run = function() {
if (is.null(self$options$dep) || self$nModels < 1 || length(self$options$blocks[[1]]) == 0)
return()
if (any(private$.getIsAliased()))
setSingularityWarning(self)
private$.populateModelFitTable()
private$.populateModelCompTable()
private$.populateAnovaTables()
private$.populateCoefTables()
private$.populateCooksTable()
private$.populateMahalTable()
private$.populateDurbinWatsonTable()
private$.populateCollinearityTable()
private$.populateNormality()
private$.populateEmmTables()
private$.prepareQQPlot()
private$.prepareResPlots()
private$.prepareEmmPlots()
private$.populateOutputs()
},
#### Compute results ----
.computeModels = function(modelNo = NULL, scaled = FALSE) {
if (scaled)
data <- private$.scaleData(self$dataProcessed)
else
data <- self$dataProcessed
formulas <- private$.formulas()
if (is.numeric(modelNo))
formulas <- formulas[modelNo]
models <- list()
for (i in seq_along(formulas))
models[[i]] <- lm(formulas[[i]], data=data, weights=self$weights)
return(models)
},
.computeWeights = function() {
legacy_weights <- self$options$weights
global_weights <- attr(self$data, "jmv-weights")
if (is.null(legacy_weights) && is.null(global_weights))
return()
if (! is.null(legacy_weights)) {
weights <- self$dataProcessed[[jmvcore::toB64(legacy_weights)]]
} else {
weights <- self$dataProcessed[[".WEIGHTS"]]
}
if (any(weights < 0)) {
jmvcore::reject(
.("'{var}' contains negative values. Negative weights are not permitted."),
var=legacy_weights
)
}
return(weights)
},
.computeAnovaModelTerms = function() {
anovaTerms <- list()
for (i in seq_along(self$models)) {
suppressMessages({
anovaTerms[[i]] <- car::Anova(
self$models[[i]], type=3, singular.ok=TRUE
)
})
}
return(anovaTerms)
},
.computeResiduals = function() {
res <- list()
for (i in seq_along(self$models))
res[[i]] <- self$models[[i]]$residuals
return(res)
},
.computeFitted = function() {
fitted <- list()
for (i in seq_along(self$models))
fitted[[i]] <- self$models[[i]]$fitted.values
return(fitted)
},
.computePredicted = function() {
data <- private$.cleanData(naSkip=jmvcore::toB64(self$options$dep))
fitted <- list()
for (i in seq_along(self$models))
fitted[[i]] <- predict(self$models[[i]], data)
return(fitted)
},
.computeCooks = function() {
cooks <- list()
for (i in seq_along(self$models))
cooks[[i]] <- stats::cooks.distance(self$models[[i]])
return(cooks)
},
.computeCooksSummary = function() {
cooksSummary <- list()
for (i in seq_along(self$cooks)) {
cooks <- self$cooks[[i]]
cooksSummary[[i]] <- list(
'mean' = mean(cooks),
'median' = median(cooks),
'sd' = sd(cooks),
'min' = min(cooks),
'max' = max(cooks)
)
}
return(cooksSummary)
},
.computeMahal = function() {
mahal <- vector(mode = "list", length(self$nModels))
data <- self$dataProcessed
for (i in seq_along(self$models)) {
cov <- attr(self$models[[i]]$terms, "term.labels")
cov <- intersect(cov, jmvcore::toB64(self$options$covs))
# skip if number of variables less than 2
if (length(cov) >= 2) {
mahalChiSq <- stats::mahalanobis(data[, cov], colMeans(data[, cov]), cov(data[, cov]))
mahal[[i]] <- data.frame(row = row.names(data), chisq = mahalChiSq, p = pchisq(mahalChiSq, length(cov), lower.tail = FALSE))
}
}
return(mahal)
},
.computeAIC = function() {
AIC <- list()
for (i in seq_along(self$models))
AIC[[i]] <- stats::AIC(self$models[[i]])
return(AIC)
},
.computeBIC = function() {
BIC <- list()
for (i in seq_along(self$models))
BIC[[i]] <- stats::BIC(self$models[[i]])
return(BIC)
},
.computeCICoefEst = function(scaled = FALSE) {
if (scaled)
models <- self$modelsScaled
else
models <- self$models
CICoefEst <- list()
for (i in seq_along(models))
CICoefEst[[i]] <- stats::confint(models[[i]], level = self$options$ciWidth / 100)
return(CICoefEst)
},
.computeVIF = function() {
modelTerms <- private$.getModelTerms()
VIF <- list()
for (i in seq_along(self$models)) {
if ( ! private$.getIsAliased()[[i]] && length(modelTerms[[i]]) > 1 ) {
VIF[[i]] <- car::vif(self$models[[i]])
} else {
VIF[[i]] <- c(VIF, list(NULL))
}
}
return(VIF)
},
.computeDurbinWatson = function() {
durbinWatson <- list()
for (i in seq_along(self$models)) {
durbinWatson[[i]] <- car::durbinWatsonTest(self$models[[i]])
}
return(durbinWatson)
},
.computeEmMeans = function(forPlot = FALSE) {
covs <- self$options$covs
termsAll <- private$.getModelTerms()
emMeansTerms <- self$options$emMeans
emMeans <- list()
for (i in seq_along(termsAll)) {
terms <- unique(unlist(termsAll[[i]]))
model <- self$models[[i]]
emmTable <- list()
for (j in seq_along(emMeansTerms)) {
term <- emMeansTerms[[j]]
if ( ! is.null(term) && all(term %in% terms)) {
termB64 <- jmvcore::toB64(term)
FUN <- list()
for (k in seq_along(termB64)) {
if (term[k] %in% covs) {
if (forPlot && k == 1) {
FUN[[termB64[k]]] <- function(x) pretty(x, 25)
} else {
FUN[[termB64[k]]] <- function(x) c(mean(x)-sd(x), mean(x), mean(x)+sd(x))
}
}
}
formula <- formula(paste('~', jmvcore::composeTerm(termB64)))
if (self$options$emmWeights)
weights <- 'equal'
else
weights <- 'cells'
suppressMessages({
emmeans::emm_options(sep=",", parens="a^", cov.keep=1)
mm <- try(
emmeans::emmeans(
model,
formula,
cov.reduce = FUN,
options = list(level=self$options$ciWidthEmm / 100),
weights = weights,
data = self$dataProcessed,
non.nuis = all.vars(formula),
),
silent = TRUE
)
emmTable[[j]] <- try(as.data.frame(summary(mm)), silent = TRUE)
})
}
}
emMeans[[i]] <- emmTable
}
return(emMeans)
},
#### Init tables/plots functions ----
.initModelFitTable = function() {
table <- self$results$modelFit
for (i in seq_along(self$options$blocks))
table$addRow(rowKey=i, values=list(model = i))
table$setNote(
"n",
jmvcore::format(
.("Models estimated using sample size of N={n}"), n="..."
)
)
},
.initModelCompTable = function() {
table <- self$results$modelComp
blocks <- self$options$blocks
if (length(blocks) <= 1) {
table$setVisible(visible = FALSE)
return()
}
for (i in 1:(length(blocks)-1))
table$addRow(rowKey=i, values=list(model1 = i, model2 = as.integer(i+1)))
},
.initModelSpec = function() {
groups <- self$results$models
for (i in seq_along(self$options$blocks)) {
groups$addItem(key=i)
group <- groups$get(key=i)
group$setTitle(paste("Model",i))
}
},
.initAnovaTables = function() {
groups <- self$results$models
termsAll <- private$.getModelTerms()
for (i in seq_along(termsAll)) {
table <- groups$get(key=i)$anova
terms <- termsAll[[i]]
for (j in seq_along(terms))
table$addRow(rowKey=paste0(terms[[j]]), values=list(term = jmvcore::stringifyTerm(terms[[j]])))
table$addRow(rowKey='.RES', values=list(term = .('Residuals')))
table$addFormat(col=1, rowKey='.RES', format=Cell.BEGIN_GROUP)
table$setNote("ss", .("Type 3 sum of squares"))
}
},
.initCoefTable = function() {
groups <- self$results$models
factors <- self$options$factors
weights <- self$options$weights
termsAll <- private$.getModelTerms()
rowNamesModel <- private$.getRowNamesModel()
for (i in seq_along(termsAll)) {
table <- groups$get(key=i)$coef
ciWidth <- self$options$ciWidth
ciWidthTitle <- jmvcore::format(.('{ciWidth}% Confidence Interval'), ciWidth=ciWidth)
table$getColumn('lower')$setSuperTitle(ciWidthTitle)
table$getColumn('upper')$setSuperTitle(ciWidthTitle)
ciWidthStdEst <- self$options$ciWidthStdEst
ciWidthStdEstTitle <- jmvcore::format(.('{ciWidth}% Confidence Interval'), ciWidth=ciWidthStdEst)
table$getColumn('stdEstLower')$setSuperTitle(ciWidthStdEstTitle)
table$getColumn('stdEstUpper')$setSuperTitle(ciWidthStdEstTitle)
coefTerms <- rowNamesModel[[i]]
table$addRow(rowKey="`(Intercept)`", values=list(term = .("Intercept")))
if (! is.null(weights)) {
private$.weightsName <- weights
table$setNote(
"weights",
jmvcore::format(.("Weighted by '{varName}'"), varName=weights)
)
}
if ( ! is.null(factors)) {
note <- ifelse(self$options$intercept == 'refLevel',
.('Represents reference level'),
.('Represents grand mean'))
table$addFootnote(rowKey="`(Intercept)`", 'term', note)
}
terms <- termsAll[[i]]
iter <- 1
for (j in seq_along(terms)) {
if (any(terms[[j]] %in% factors)) {
table$addRow(rowKey=terms[[j]],
values=list(term = paste0(jmvcore::stringifyTerm(terms[[j]]), ':'),
est='', se='', t='', p='', lower='', upper='', stdEst='',
stdEstLower='', stdEstUpper=''))
contrastNames <- private$.contrastsCoefTable(terms[[j]])
for (k in seq_along(contrastNames)) {
iter <-iter + 1
rowKey <- jmvcore::composeTerm(coefTerms[[iter]])
table$addRow(rowKey=rowKey, values=list(term = contrastNames[[k]]))
table$addFormat(rowKey=rowKey, col=1, Cell.INDENTED)
}
} else {
iter <- iter + 1
rowKey <- jmvcore::composeTerm(jmvcore::toB64(terms[[j]]))
table$addRow(rowKey=rowKey, values=list(term = jmvcore::stringifyTerm(terms[[j]])))
}
}
}
},
.initCollinearityTable = function() {
groups <- self$results$models
termsAll <- private$.getModelTerms()
for (i in seq_along(termsAll)) {
table <- groups$get(key=i)$assump$collin
terms <- termsAll[[i]]
if (length(terms) < 1)
terms <- ''
for (i in seq_along(terms))
table$addRow(rowKey=i, values=list(term = jmvcore::stringifyTerm(terms[i])))
}
},
.initResPlots=function() {
groups <- self$results$models
termsAll <- private$.getModelTerms()
covs <- self$options$covs
for (i in seq_along(termsAll)) {
modelTerms <- termsAll[[i]]
if (length(modelTerms) < 1) {
terms <- ''
} else {
terms <- c(.('Fitted'), self$options$dep)
for (term in modelTerms) {
if (length(term) == 1 && term %in% covs)
terms <- c(terms, term)
}
}
images <- groups$get(key=i)$assump$resPlots
for (term in terms)
images$addItem(term)
}
},
.initEmm = function() {
groups <- self$results$models
termsAll <- private$.getModelTerms()
emMeans <- self$options$emMeans
for (i in seq_along(termsAll)) {
group <- groups$get(key=i)$emm
terms <- unique(unlist(termsAll[[i]]))
for (j in seq_along(emMeans)) {
emm <- emMeans[[j]]
if ( ! is.null(emm) && all(emm %in% terms)) {
group$addItem(key=j)
emmGroup <- group$get(key=j)
emmGroup$setTitle(jmvcore::stringifyTerm(emm))
image <- emmGroup$emmPlot
size <- private$.plotSize(emm)
image$setSize(size[1], size[2])
}
}
}
},
.initEmmTable = function() {
groups <- self$results$models
termsAll <- private$.getModelTerms()
emMeans <- self$options$emMeans
factors <- self$options$factors
emMeansTableTitle <- .('Estimated Marginal Means - {term}')
ciWidthTitle <- jmvcore::format(.('{ciWidth}% Confidence Interval'), ciWidth=self$options$ciWidthEmm)
for (i in seq_along(termsAll)) {
group <- groups$get(key=i)$emm
terms <- unique(unlist(termsAll[[i]]))
for (j in seq_along(emMeans)) {
emm <- emMeans[[j]]
if ( ! is.null(emm) && all(emm %in% terms)) {
emmGroup <- group$get(key=j)
table <- emmGroup$emmTable
table$setTitle(jmvcore::format(emMeansTableTitle, term=jmvcore::stringifyTerm(emm)))
nLevels <- numeric(length(emm))
for (k in rev(seq_along(emm))) {
if (emm[k] %in% factors) {
table$addColumn(name=emm[k], title=emm[k], type='text', combineBelow=TRUE)
nLevels[k] <- length(levels(self$data[[ emm[k] ]]))
} else {
table$addColumn(name=emm[k], title=emm[k], type='number', combineBelow=TRUE)
nLevels[k] <- 3
}
}
table$addColumn(name='emmean', title=.('Marginal Mean'), type='number')
table$addColumn(name='se', title=.('SE'), type='number')
table$addColumn(name='lower', title=.('Lower'), type='number', superTitle=ciWidthTitle, visible="(ciEmm)")
table$addColumn(name='upper', title=.('Upper'), type='number', superTitle=ciWidthTitle, visible="(ciEmm)")
nRows <- prod(nLevels)
for (k in 1:nRows) {
row <- list()
table$addRow(rowKey=k, row)
}
}
}
}
},
.initOutputs = function() {
description = function(varType, modelNo=NULL) {
return(
jmvcore::format(
.("{varType} of linear regression model{modelNo}"),
varType=varType,
modelNo=ifelse(is.null(modelNo), "", paste0(" ", modelNo))
)
)
}
title = function(varType, modelNo) {
return(jmvcore::format("{} {}", varType, modelNo))
}
if (self$nModels > 1) {
keys <- seq_len(self$nModels)
measureTypes <- rep('continuous', self$nModels)
titles <- vapply(keys, function(key) title(.('Residuals'), key), '')
descriptions <- vapply(keys, function(key) description(.('Residuals'), key), '')
self$results$residsOV$set(keys, titles, descriptions, measureTypes)
titles <- vapply(keys, function(key) title(.('Predicted values'), key), '')
descriptions <- vapply(keys, function(key) description(.('Predicted values'), key), '')
self$results$predictOV$set(keys, titles, descriptions, measureTypes)
titles <- vapply(keys, function(key) title(.("Cook's distance"), key), '')
descriptions <- vapply(keys, function(key) description(.("Cook's distance"), key), '')
self$results$cooksOV$set(keys, titles, descriptions, measureTypes)
titles <- c(vapply(keys, function(key) title(.("Mahalanobis ChiSq"), key), ''),
vapply(keys, function(key) title(.("Mahalanobis p"), key), ''))
descriptions <- c(vapply(keys, function(key) description(.("Mahalanobis distance (Chi sq.)"), key), ''),
vapply(keys, function(key) description(.("Mahalanobis distance (p)"), key), ''))
order <- as.vector(vapply(seq(self$nModels), function(p) c(p, p + self$nModels), numeric(2)))
self$results$mahalOV$set(seq(2 * self$nModels), titles[order], descriptions[order], rep(measureTypes, 2))
} else {
titles <- c(.("Mahalanobis ChiSq"), .("Mahalanobis p"))
descriptions <- c(description(.("Mahalanobis distance (Chi sq.)")), description(.("Mahalanobis distance (p)")))
self$results$mahalOV$set(seq(2), titles, descriptions, rep('continuous', 2))
}
},
#### Populate tables functions ----
.populateModelFitTable = function() {
table <- self$results$modelFit
models <- self$models
AIC <- self$AIC
BIC <- self$BIC
for (i in seq_along(models)) {
row <- list()
row[["aic"]] <- AIC[[i]]
row[["bic"]] <- BIC[[i]]
row[["r"]] <- sqrt(summary(models[[i]])$r.squared)
row[["r2"]] <- summary(models[[i]])$r.squared
row[["r2Adj"]] <- summary(models[[i]])$adj.r.squared
row[["rmse"]] <- sqrt(mean(models[[i]]$residuals^2))
F <- summary(models[[i]])$fstatistic
if ( ! is.null(F)) {
row[["f"]] <- as.numeric(F[1])
row[["df1"]] <- as.numeric(F[2])
row[["df2"]] <- as.numeric(F[3])
row[["p"]] <- stats::pf(F[1], F[2], F[3], lower.tail=FALSE)
} else {
row[["f"]] <- ""
row[["df1"]] <- ""
row[["df2"]] <- ""
row[["p"]] <- ""
}
table$setRow(rowNo=i, values = row)
}
table$setNote(
"n",
jmvcore::format(
"Models estimated using sample size of N={n}",
n=length(models[[1]]$fitted.values)
)
)
},
.populateModelCompTable = function() {
table <- self$results$modelComp
models <- self$models
ANOVA <- self$anovaModelComparison
r <- ANOVA[-1,]
if (length(models) <= 1)
return()
for (i in 1:(length(models)-1)) {
row <- list()
row[["r2"]] <- abs(summary(models[[i]])$r.squared - summary(models[[i+1]])$r.squared)
row[["f"]] <- (r[i,4] / r[i,3]) / (r[i,2] / r[i,1])
row[["df1"]] <- r[i,3]
row[["df2"]] <- r[i,1]
row[["p"]] <- stats::pf(row[["f"]], row[["df1"]], row[["df2"]], lower.tail=FALSE)
table$setRow(rowNo=i, values = row)
}
},
.populateAnovaTables = function() {
groups <- self$results$models
termsAll <- private$.getModelTerms()
anova <- self$anovaModelTerms
for (i in seq_along(termsAll)) {
table <- groups$get(key=i)$anova
terms <- termsAll[[i]]
termsB64 <- lapply(terms, jmvcore::toB64)
r <- anova[[i]]
rowTerms <- jmvcore::decomposeTerms(rownames(r))
resIndex <- length(rowTerms)
for (j in seq_along(terms)) {
term <- termsB64[[j]]
# check which rows have the same length + same terms
index <- which(length(term) == sapply(rowTerms, length) &
sapply(rowTerms, function(x) all(term %in% x)))
ss <- r[index, 1]
df <- r[index, 2]
if (df == 0) {
ms <- NaN
F <- NaN
p <- NaN
} else {
ms <- ss / df
F <- r[index, 3]
p <- r[index, 4]
}
row <- list(ss=ss, df=df, ms=ms, F=F, p=p)
table$setRow(rowKey=paste0(terms[[j]]), values = row)
}
ss <- r[resIndex, 1]
df <- r[resIndex, 2]
ms <- ss / df
row <- list(ss=ss, df=df, ms=ms, F='', p='')
table$setRow(rowKey='.RES', values = row)
if ( private$.getIsAliased()[[i]] )
table$setNote("alias", .(SINGULAR_WARNING))
}
},
.populateCoefTables = function() {
groups <- self$results$models
termsAll <- private$.getRowNamesModel()
models <- self$models
modelsScaled <- self$modelsScaled
for (i in seq_along(termsAll)) {
table <- groups$get(key=i)$coef
model <- summary(models[[i]])
modelScaled <- summary(modelsScaled[[i]])
CI <- self$CICoefEst[[i]]
CIScaled <- self$CICoefEstScaled[[i]]
coef<- model$coef
coefScaled <- modelScaled$coef
terms <- termsAll[[i]]
rowTerms <- jmvcore::decomposeTerms(rownames(coef))
for (j in seq_along(terms)) {
term <- terms[[j]]
# check which rows have the same length + same terms
index <- which(length(term) == sapply(rowTerms, length) &
sapply(rowTerms, function(x) all(term %in% x)))
if (length(index) > 0) {
row <- list()
row[["est"]] <- coef[index, 1]
row[["se"]] <- coef[index, 2]
row[["t"]] <- coef[index, 3]
row[["p"]] <- coef[index, 4]
row[["lower"]] <- CI[index, 1]
row[["upper"]] <- CI[index, 2]
if (rowTerms[index] == "(Intercept)") {
row[["stdEst"]] <- ""
row[["stdEstLower"]] <- ""
row[["stdEstUpper"]] <- ""
} else {
row[["stdEst"]] <- coefScaled[index, 1]
row[["stdEstLower"]] <- CIScaled[index, 1]
row[["stdEstUpper"]] <- CIScaled[index, 2]
}
} else {
row <- list(
est = NaN,
se = NaN,
t = NaN,
p = NaN,
lower = NaN,
upper = NaN,
stdEst = NaN,
stdEstLower = NaN,
stdEstUpper = NaN
)
}
table$setRow(rowKey=jmvcore::composeTerm(term), values=row)
if ( private$.getIsAliased()[[i]] )
table$setNote("alias", .(SINGULAR_WARNING))
}
}
},
.populateCooksTable = function() {
if (! self$options$cooks)
return()
groups <- self$results$models
termsAll <- private$.getModelTerms()
cooks <- private$.computeCooksSummary()
for (i in seq_along(termsAll)) {
table <- groups$get(key=i)$dataSummary$cooks
table$setRow(rowNo=1, values=cooks[[i]])
}
},
.populateMahalTable = function() {
if (!self$options$mahal)
return()
mahal <- self$mahal
mahalp <- as.numeric(self$options$mahalp)
groups <- self$results$models
termsAll <- private$.getModelTerms()
for (i in seq_along(termsAll)) {
table <- groups$get(key=i)$dataSummary$mahal
if (i > length(mahal) || is.null(mahal[[i]])) {
mahalNote <- jmvcore::Notice$new(options = self$options, name = 'warningMessage', type = jmvcore::NoticeType$WARNING)
mahalNote$setContent(.("Mahalanobis distance can only be calculated for models with two or more independent variables."))
groups$get(key=i)$dataSummary$insert(1, mahalNote)
} else {
# select which rows contain values below p-threshold (outliers)
mahalRow <- mahal[[i]][mahal[[i]]$p <= mahalp, "row"]
mahalVal = list(mean = mean(mahal[[i]]$chisq), median = median(mahal[[i]]$chisq), sd = sd(mahal[[i]]$chisq),
min = min(mahal[[i]]$chisq), max = max(mahal[[i]]$chisq), excRow = paste(mahalRow, collapse = ", "))
table$setRow(rowNo = 1, values = mahalVal)
if (length(mahalRow) == 0)
table$setNote("excRow", jmvcore::format(.("There were no Mahalanobis distances with a threshold below p < {p}."), p = mahalp))
}
}
},
.populateDurbinWatsonTable = function() {
if (! self$options$durbin)
return()
groups <- self$results$models
termsAll <- private$.getModelTerms()
for (i in seq_along(termsAll)) {
table <- groups$get(key=i)$assump$durbin
dwTest <- self$durbinWatson[[i]]
row <- list()
row[["autoCor"]] <- as.numeric(dwTest[1])
row[["dw"]] <- as.numeric(dwTest[2])
row[["p"]] <- as.numeric(dwTest[3])
table$setRow(rowNo=1, values=row)
}
},
.populateCollinearityTable = function() {
groups <- self$results$models
termsAll <- private$.getModelTerms()
for (i in seq_along(termsAll)) {
table <- groups$get(key=i)$assump$collin
terms <- lapply(termsAll[[i]], jmvcore::toB64)
if (length(self$VIF) == 0)
VIF <- NULL
else
VIF <- self$VIF[[i]]
if (length(dim(VIF)) > 1) {
names <- rownames(VIF)
VIF <- VIF[,3]
names(VIF) <- names
}
rowTerms <- jmvcore::decomposeTerms(names(VIF))
for (j in seq_along(terms)) {
row <- list()
if (private$.getIsAliased()[[i]]) {
row[["tol"]] <- NaN
row[["vif"]] <- NaN
} else if (length(terms) <= 1) {
row[["tol"]] <- 1
row[["vif"]] <- 1
} else {
# check which rows have the same length + same terms
index <- which(length(terms[[j]]) == sapply(rowTerms, length) &
sapply(rowTerms, function(x) all(terms[[j]] %in% x)))
row[["tol"]] <- 1 / as.numeric(VIF[index])
row[["vif"]] <- as.numeric(VIF[index])
}
table$setRow(rowNo=j, values=row)
}
if ( private$.getIsAliased()[[i]] )
table$setNote("alias", .(SINGULAR_WARNING))
}
},
.populateEmmTables = function() {
if (! self$options$emmTables)
return()
groups <- self$results$models
termsAll <- private$.getModelTerms()
emMeans <- self$options$emMeans
factors <- self$options$factors
covs <- self$options$covs
for (i in seq_along(termsAll)) {
group <- groups$get(key=i)$emm
terms <- unique(unlist(termsAll[[i]]))
for (j in seq_along(emMeans)) {
emm <- emMeans[[j]]
if ( ! is.null(emm) && all(emm %in% terms)) {
emmGroup <- group$get(key=j)
table <- emmGroup$emmTable
emmTable <- self$emMeans[[i]][[j]]
covValues <- list()
for (k in seq_along(emm)) {
if (emm[k] %in% covs)
covValues[[ emm[k] ]] <- sort(unique(emmTable[, jmvcore::toB64(emm[k])]))
}
for (k in 1:nrow(emmTable)) {
row <- list()
sign <- list()
for (l in seq_along(emm)) {
value <- emmTable[k, jmvcore::toB64(emm[l])]
if (emm[l] %in% factors) {
row[[emm[l]]] <- jmvcore::fromB64(value)
} else {
row[[emm[l]]] <- value
if (value == covValues[[ emm[l] ]][1])
sign[[ emm[l] ]] <- '\u207B'
else if (value == covValues[[ emm[l] ]][3])
sign[[ emm[l] ]] <- '\u207A'
else
sign[[ emm[l] ]] <- '<sup>\u03BC</sup>'
}
}
row[['emmean']] <- emmTable[k, 'emmean']
row[['se']] <- emmTable[k, 'SE']
row[['lower']] <- emmTable[k, 'lower.CL']
row[['upper']] <- emmTable[k, 'upper.CL']
table$setRow(rowNo=k, values=row)
if (length(covValues) > 0) {
table$setNote("sub", .("\u207B mean - 1SD, <sup>\u03BC</sup> mean, \u207A mean + 1SD"))
for (l in seq_along(emm)) {
if (emm[l] %in% covs)
table$addSymbol(rowNo=k, emm[l], sign[[ emm[l] ]])
}
}
}
}
}
}
},
.populateNormality = function() {
groups <- self$results$models
termsAll <- private$.getModelTerms()
for (i in seq_along(termsAll)) {
residuals <- self$residuals[[i]]
table <- groups$get(key=i)$assump$get('norm')
res <- try(shapiro.test(residuals), silent=TRUE)
if (jmvcore::isError(res)) {
values <- list(`s[sw]`=NaN, `p[sw]`='')
} else {
values <- list(`s[sw]`=res$statistic, `p[sw]`=res$p.value)
}
table$setRow(rowNo=1, values)
}
},
.populateOutputs = function() {
if (self$options$residsOV && self$results$residsOV$isNotFilled()) {
self$results$residsOV$setRowNums(private$.getDataRowNums())
for (i in seq_along(self$residuals))
self$results$residsOV$setValues(index=i, self$residuals[[i]])
}
if (self$options$predictOV && self$results$predictOV$isNotFilled()) {
self$results$predictOV$setRowNums(names(self$predicted[[1]]))
for (i in seq_along(self$fitted))
self$results$predictOV$setValues(index=i, as.numeric(self$predicted[[i]]))
}
if (self$options$cooksOV && self$results$cooksOV$isNotFilled()) {
self$results$cooksOV$setRowNums(private$.getDataRowNums())
for (i in seq_along(self$cooks))
self$results$cooksOV$setValues(index=i, self$cooks[[i]])
}
if (self$options$mahalOV && self$results$mahalOV$isNotFilled()) {
self$results$mahalOV$setRowNums(private$.getDataRowNums())
for (i in seq_along(self$mahal)) {
if (is.null(self$mahal[[i]])) next
self$results$mahalOV$setValues(index=(i * 2 - 1), self$mahal[[i]]$chisq)
self$results$mahalOV$setValues(index=(i * 2 - 0), self$mahal[[i]]$p)
}
}
},
#### Plot functions ----
.prepareQQPlot = function() {
groups <- self$results$models
termsAll <- private$.getModelTerms()
for (i in seq_along(termsAll)) {
image <- groups$get(key=i)$assump$get('qqPlot')
image$setState(i)
}
},
.qqPlot = function(image, ggtheme, theme, ...) {
if (is.null(image$state))
return(FALSE)
df <- as.data.frame(qqnorm(scale(self$residuals[[image$state]]), plot.it=FALSE))
p <- ggplot(data=df, aes(x=x, y=y)) +
geom_abline(slope=1, intercept=0, colour=theme$color[1]) +
geom_point(aes(x=x,y=y), size=2, colour=theme$color[1]) +
xlab(.("Theoretical Quantiles")) +
ylab(.("Standardized Residuals")) +
ggtheme
return(p)
},
.prepareResPlots = function() {
groups <- self$results$models
termsAll <- private$.getModelTerms()
for (i in seq_along(termsAll)) {
images <- groups$get(key=i)$assump$resPlots
for (term in images$itemKeys) {
image <- images$get(key=term)
image$setState(list(modelNo=i, term=term))
}
}
},
.resPlot = function(image, ggtheme, theme, ...) {
if (is.null(image$state))
return(FALSE)
res <- self$residuals[[image$state$modelNo]]
if (image$state$term == .('Fitted')) {
x <- self$fitted[[image$state$modelNo]]
} else {
x <- self$dataProcessed[[jmvcore::toB64(image$state$term)]]
}
df <- data.frame(y=res, x=x)
p <- ggplot(data=df, aes(y=y, x=x)) +
geom_point(aes(x=x,y=y), colour=theme$color[1]) +
xlab(image$state$term) +
ylab(.("Residuals")) +
ggtheme
return(p)
},
.prepareEmmPlots = function() {
if (! self$options$emmPlots)
return()
covs <- self$options$covs
dep <- self$options$dep
groups <- self$results$models
termsAll <- private$.getModelTerms()
emMeans <- self$options$emMeans
emMeansTables <- private$.getEmMeansForPlot()
for (i in seq_along(termsAll)) {
group <- groups$get(key=i)$emm
terms <- unique(unlist(termsAll[[i]]))
for (j in seq_along(emMeans)) {
term <- emMeans[[j]]
if ( ! is.null(term) && all(term %in% terms)) {
image <- group$get(key=j)$emmPlot
termB64 <- jmvcore::toB64(term)
cont <- FALSE
if (term[1] %in% covs)
cont <- TRUE
d <- emMeansTables[[i]][[j]]
for (k in 1:3) {
if ( ! is.na(termB64[k])) {
if (term[k] %in% covs) {
if (k > 1) {
d[[ termB64[k] ]] <- factor(d[[ termB64[k] ]])
levels(d[[ termB64[k] ]]) <- c('-1SD', 'Mean', '+1SD')
}
} else {
d[[ termB64[k] ]] <- factor(
jmvcore::fromB64(d[[ termB64[k] ]]),
jmvcore::fromB64(levels(d[[ termB64[k] ]]))
)
}
}
}
names <- list(
'x'=termB64[1], 'y'='emmean', 'lines'=termB64[2], 'plots'=termB64[3],
'lower'='lower.CL', 'upper'='upper.CL'
)
names <- lapply(names, function(x) if (is.na(x)) NULL else x)
labels <- list('x'=term[1], 'y'=dep, 'lines'=term[2], 'plots'=term[3])
labels <- lapply(labels, function(x) if (is.na(x)) NULL else x)
image$setState(list(data=d, names=names, labels=labels, cont=cont))
}
}
}
},
.emmPlot = function(image, ggtheme, theme, ...) {
if (is.null(image$state))
return(FALSE)
data <- image$state$data
names <- image$state$names
labels <- image$state$labels
cont <- image$state$cont
dodge <- position_dodge(0.4)
if (theme$bw) {
lty <- names$lines
color <- NULL
} else {
lty <- NULL
color <- names$lines
}
p <- ggplot(data=data,
aes_string(x=names$x, y=names$y, group=names$lines),
inherit.aes = FALSE)
if (cont) {
p <- p + geom_line(aes_string(color=color, fill=color, linetype=lty))
if (self$options$ciEmm && is.null(names$plots) && is.null(names$lines))
p <- p +
geom_ribbon(
aes_string(x=names$x, ymin=names$lower, ymax=names$upper),
show.legend=TRUE, alpha=.3
)
} else {
p <- p +
geom_point(
aes_string(color=names$lines, fill=names$lines),
position = dodge
)
if (self$options$ciEmm)
p <- p +
geom_errorbar(
aes_string(
x=names$x, ymin=names$lower, ymax=names$upper,
color=names$lines, fill=names$lines
),
width=.1, size=.8, position=dodge
)
}
if ( ! is.null(names$plots)) {
formula <- as.formula(paste(". ~", names$plots))
p <- p + facet_grid(formula)
}
p <- p +
labs(x=labels$x, y=labels$y, fill=labels$lines, color=labels$lines, linetype=labels$lines) +
ggtheme + theme(panel.spacing = unit(2, "lines"))
return(p)
},
#### Helper functions ----
.getModelTerms = function() {
if (is.null(private$.modelTerms)) {
blocks <- self$options$blocks
terms <- list()
if (is.null(blocks)) {
terms[[1]] <- c(self$options$covs, self$options$factors)
} else {
for (i in seq_along(blocks)) {
terms[[i]] <- unlist(blocks[1:i], recursive = FALSE)
}
}
private$.modelTerms <- terms
}
return(private$.modelTerms)
},
.getRowNamesModel = function() {
if (is.null(private$.rowNamesModel)) {
factors <- self$options$factors
termsAll <- private$.getModelTerms()
rowNamesAll <- list()
for (i in seq_along(termsAll)) {
rowNames <- list()
rowNames[[1]] <- "(Intercept)"
terms <- termsAll[[i]]
for (term in terms) {
if (any(term %in% factors))
rowNames <- c(rowNames, private$.contrastModel(term))
else
rowNames[[length(rowNames) + 1]] <- jmvcore::toB64(term)
}
rowNamesAll[[i]] <- rowNames
}
private$.rowNamesModel <- rowNamesAll
}
return(private$.rowNamesModel)
},
.getEmMeansForPlot = function() {
if (is.null(private$.emMeansForPlot))
private$.emMeansForPlot <- private$.computeEmMeans(forPlot=TRUE)
return(private$.emMeansForPlot)
},
.getDataRowNums = function() {
if (is.null(private$.dataRowNums))
private$.dataRowNums <- rownames(self$dataProcessed)
return(private$.dataRowNums)
},
.getIsAliased = function() {
if (is.null(private$.isAliased)) {
aliased <- list()
for (i in seq_along(self$models))
aliased[[i]] <- any(summary(self$models[[i]])$aliased)
private$.isAliased <- aliased
}
return(private$.isAliased)
},
.contrastModel = function(terms) {
#' Returns the names of the factor contrasts as they are
#' defined by the lm function
factors <- self$options$factors
nLevels <- list()
for (factor in factors)
nLevels[[factor]] <- length(levels(self$data[[factor]]))
contrast <- list()
for (term in terms) {
if (term %in% factors) {
contrast[[term]] <- paste0(jmvcore::toB64(term), 1:(nLevels[[term]] - 1))
} else {
contrast[[term]] <- jmvcore::toB64(term)
}
}
contrastGrid <- expand.grid(contrast)
contrastTerms <- list()
for (i in 1:nrow(contrastGrid))
contrastTerms[[i]] <- as.character(unlist(contrastGrid[i,]))
return(contrastTerms)
},
.contrastsCoefTable = function(terms) {
#' Returns the names of the factor contrasts as they are
#' displayed in the coef table
factors <- self$options$factors
refLevels <- self$refLevels
refVars <- sapply(refLevels, function(x) x$var)
levels <- list()
for (factor in factors)
levels[[factor]] <- levels(self$data[[factor]])
contrast <- list()
for (term in terms) {
if (term %in% factors) {
ref <- refLevels[[which(term == refVars)]][['ref']]
refNo <- which(ref == levels[[term]])
contrLevels <- levels[[term]][-refNo]
refLevel <- levels[[term]][refNo]
c <- paste(contrLevels, refLevel, sep = ' \u2013 ')
if (length(terms) > 1)
c <- paste0('(', c, ')')
contrast[[term]] <- c
} else {
contrast[[term]] <- term
}
}
contrastGrid <- expand.grid(contrast)
contrastNames <- apply(contrastGrid, 1, jmvcore::stringifyTerm)
return(contrastNames)
},
.formulas = function() {
dep <- self$options$dep
depB64 <- jmvcore::toB64(dep)
terms <- private$.getModelTerms()
formulas <- list();
for (i in seq_along(terms)) {
termsB64 <- lapply(terms[[i]], jmvcore::toB64)
composedTerms <- jmvcore::composeTerms(termsB64)
formulas[[i]] <- as.formula(paste(depB64, paste0(composedTerms, collapse ="+"), sep="~"))
}
return(formulas)
},
.cleanData = function(naOmit=TRUE, naSkip=NULL) {
dep <- self$options$dep
covs <- self$options$covs
factors <- self$options$factors
weights <- self$options$weights
refLevels <- self$refLevels
dataRaw <- self$data
data <- list()
refVars <- sapply(refLevels, function(x) x$var)
for (factor in factors) {
if (length(levels(dataRaw[[factor]])) <= 1)
stop(jmvcore::format(.("Factor '{factor}' needs to have at least 2 levels"), factor=factor))
ref <- refLevels[[which(factor == refVars)]][['ref']]
column <- factor(
dataRaw[[factor]],
ordered = FALSE,
levels = levels(dataRaw[[factor]])
)
levels(column) <- jmvcore::toB64(levels(column))
column <- relevel(column, ref = jmvcore::toB64(ref))
data[[jmvcore::toB64(factor)]] <- column
stats::contrasts(data[[jmvcore::toB64(factor)]]) <- private$.createContrasts(levels(column))
}
for (cov in c(dep, covs, weights))
data[[jmvcore::toB64(cov)]] <- jmvcore::toNumeric(dataRaw[[cov]])
global_weights <- attr(dataRaw, "jmv-weights")
if (is.null(weights) && ! is.null(global_weights))
data[[".WEIGHTS"]] = jmvcore::toNumeric(global_weights)
attr(data, 'row.names') <- rownames(self$data)
attr(data, 'class') <- 'data.frame'
if (naOmit) {
data <- tibble::rownames_to_column(data)
data <- tidyr::drop_na(data, -tidyselect::all_of(naSkip))
data <- tibble::column_to_rownames(data)
}
return(data)
},
.plotSize = function(emm) {
data <- self$data
factors <- self$options$factors
levels <- list()
for (i in seq_along(emm)) {
column <- data[[ emm[i] ]]
if (emm[i] %in% factors) {
levels[[ emm[i] ]] <- levels(column)
} else {
if (i == 1)
levels[[ emm[i] ]] <- ''
else
levels[[ emm[i] ]] <- c('-1SD', 'Mean', '+1SD')
}
}
nLevels <- as.numeric(sapply(levels, length))
nLevels <- ifelse(is.na(nLevels[1:3]), 1, nLevels[1:3])
nCharLevels <- as.numeric(sapply(lapply(levels, nchar), max))
nCharLevels <- ifelse(is.na(nCharLevels[1:3]), 0, nCharLevels[1:3])
nCharNames <- as.numeric(nchar(names(levels)))
nCharNames <- ifelse(is.na(nCharNames[1:3]), 0, nCharNames[1:3])
xAxis <- 30 + 20
yAxis <- 30 + 20
if (emm[1] %in% factors) {
width <- max(350, 25 * nLevels[1] * nLevels[2] * nLevels[3])
height <- 300 + ifelse(nLevels[3] > 1, 20, 0)
} else {
width <- max(350, 300 * nLevels[3])
height <- 300 + ifelse(nLevels[3] > 1, 20, 0)
}
legend <- max(25 + 21 + 3.5 + 8.3 * nCharLevels[2] + 28, 25 + 10 * nCharNames[2] + 28)
width <- yAxis + width + ifelse(nLevels[2] > 1, legend, 0)
height <- xAxis + height
return(c(width, height))
},
.createContrasts=function(levels) {
if (self$options$intercept == 'refLevel') {
contrast <- contr.treatment(levels)
dimnames(contrast) <- NULL
} else {
nLevels <- length(levels)
dummy <- contr.treatment(levels)
dimnames(dummy) <- NULL
coding <- matrix(rep(1/nLevels, prod(dim(dummy))), ncol=nLevels-1)
contrast <- (dummy - coding)
}
return(contrast)
},
.scaleData = function(data) {
for (col in names(data)) {
if ( ! is.factor(data[[col]]) && length(unique(data[[col]])) > 1 )
data[[col]] <- scale(data[[col]])
}
return(data)
})
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.