mahalanobis | R Documentation |
Returns the squared Mahalanobis distance of all rows in x
and the
vector mu = center
with respect to
Sigma = cov
.
This is (for vector x
) defined as
D^2 = (x - μ)' Σ^-1 (x - μ)
mahalanobis(x, center, cov, inverted = FALSE, ...)
x |
vector or matrix of data with, say, p columns. |
center |
mean vector of the distribution or second data vector of
length p or recyclable to that length. If set to
|
cov |
covariance matrix (p x p) of the distribution. |
inverted |
logical. If |
... |
passed to |
cov
, var
require(graphics) ma <- cbind(1:6, 1:3) (S <- var(ma)) mahalanobis(c(0, 0), 1:2, S) x <- matrix(rnorm(100*3), ncol = 3) stopifnot(mahalanobis(x, 0, diag(ncol(x))) == rowSums(x*x)) ##- Here, D^2 = usual squared Euclidean distances Sx <- cov(x) D2 <- mahalanobis(x, colMeans(x), Sx) plot(density(D2, bw = 0.5), main="Squared Mahalanobis distances, n=100, p=3") ; rug(D2) qqplot(qchisq(ppoints(100), df = 3), D2, main = expression("Q-Q plot of Mahalanobis" * ~D^2 * " vs. quantiles of" * ~ chi[3]^2)) abline(0, 1, col = 'gray')
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.