## -- Common functions related to cluster markers and differential expression (contrasts).
assert_column_in_cell_data <- function(source_column, cell_data, marker_source_name) {
assert_that_(
source_column %in% colnames(cell_data),
msg = str_space(
"{.field source_column} {.val {source_column}} of marker source {.val {marker_source_name}}",
"is not present in {.var cell_data} target. Check {.field CLUSTER_MARKERS_SOURCES}, {.field CONTRAST_SOURCES} and",
"{.field CELL_GROUPINGS} in cluster_markers, contrasts and 02_norm_clustering configs, respectively."
)
)
}
#' @title Compute cell cluster markers.
#' @description This is a wrapper around [scran::findMarkers()]. Depending on test type, `stats.*` columns
#' in returned `DataFrame` are replaced by either `lfc_*` or `auc_*`.
#' `DataFrame`s with results are appended to the `params` tibble, but because [scran::findMarkers()] returns
#' `DataFrame` for each level of a factor, those are unnested in the returned tibble.
#' That means for each row of `params` you will get result (row) for each tested level.
#' @param sce A `SingleCellExperiment` object with normalized log-expression values and the following `rowData()`
#' columns: `"ENSEMBL"`, `"ENTREZID"`, `"SYMBOL"`, `"GENENAME"`.
#' @param params A tibble. See `cluster_markers_test_params` or `contrasts_test_params` target for details.
#' @param markers_type A character scalar: type of markers to get. For `"contrast"`, the following parameters are
#' always used in [scran::findMarkers()]:
#' - `direction = "any"`
#' - `pval.type = "any"`
#' - `min.prop = NULL`
#' @return A tibble.
#'
#' @concept sc_markers
#' @export
scran_markers <- function(sce, params, markers_type = c("global", "contrast")) {
markers_type <- arg_match(markers_type)
params <- lapply_rows(params, FUN = function(par) {
par_ <- par
par <- replace_list_nas_with_nulls(par)
if (par$test_type == "wilcox") {
output_field <- "auc_"
} else {
output_field <- "lfc_"
}
findMarkers_ <- methods::getMethod(scran::findMarkers, signature = "SingleCellExperiment")
if (markers_type == "global") {
cli_alert_info(glue("{par$name} ({par$source_column}), {par$test_type} test"))
args <- list(
x = sce,
direction = par$lfc_direction,
lfc = par$lfc_test,
groups = par$groups,
test.type = par$test_type,
block = par$blocks,
pval.type = par$pval_type,
min.prop = par$min_prop,
std.lfc = par$std_lfc,
log.p = FALSE,
full.stats = TRUE,
row.data = rowData(sce)[, c("ENSEMBL", "ENTREZID", "SYMBOL", "GENENAME")],
add.summary = TRUE
)
} else {
cli_alert_info(glue("{par$source_column}, {par$test_type} test"))
args <- list(
x = sce,
direction = "any",
lfc = par$lfc_test,
groups = par$groups,
block = par$blocks,
test.type = par$test_type,
pval.type = "any",
# min.prop = min_prop,
std.lfc = par$std_lfc,
log.p = FALSE,
full.stats = TRUE,
row.data = rowData(sce)[, c("ENSEMBL", "ENTREZID", "SYMBOL", "GENENAME")],
add.summary = TRUE
)
}
if (args$test.type != "t") {
args$std.lfc <- NULL
}
markers <- do.call(findMarkers_, args = args, quote = TRUE)
## -- Replace stats.* by lfc_* or auc_* (depends on the test type).
par_$markers <- lapply(markers, FUN = function(res_level) {
colnames(res_level) <- stringr::str_replace(colnames(res_level), "^stats\\.", output_field)
res_level[[glue("{output_field}summary")]] <- res_level$summary.stats
res_level$summary.stats <- NULL
return(res_level)
})
return(par_)
})
## -- Make a row for each pairwise test result.
params <- params %>%
tidyr::unnest(.data$markers, names_repair = "minimal") %>%
dplyr::mutate(
group_level = names(.data$markers),
id = str_c(.data$name, .data$test_type, .data$group_level, sep = "_"),
markers = set_names(.data$markers, .data$id)
)
return(params)
}
#' @title Filter a dataframe with cluster markers.
#' @param markers A dataframe-like object.
#' @param top_n A numeric scalar: number of top markers to keep.
#' @param top_n_wt A character scalar: name of column in `markers` by which top markers will be determined:
#' - `"top"`: the minimum rank across all pairwise comparisons. Only possible if markers were computed
#' with `pval.type="any"`.
#' - `"fdr"`: False Discovery Rate
#' - `"lfc"`: log2 fold change
#' - `"auc"`: Area Under Curve. Only possible if marker test was `"wilcox"`.
#' @param distinct_by A character scalar: name of column in `markers` by which unique rows will be kept.
#' @return A filtered `markers` object.
#'
#' @concept sc_markers
#' @export
filter_markers <- function(markers, top_n, top_n_wt = c("top", "fdr", "lfc", "auc"), distinct_by = NULL) {
top_n_wt <- arg_match(top_n_wt)
markers <- as.data.frame(markers)
if (top_n_wt == "top") {
markers_top <- dplyr::filter(markers, .data$Top <= top_n)
} else if (top_n_wt == "fdr") {
markers_top <- dplyr::slice_min(markers, order_by = .data$FDR, n = top_n)
} else if (top_n_wt == "lfc") {
if (all(markers$lfc_summary <= 0)) {
markers_top <- dplyr::slice_min(markers, order_by = -.data$lfc_summary, n = top_n)
} else if (all(markers$lfc_summary >= 0)) {
markers_top <- dplyr::slice_max(markers, order_by = .data$lfc_summary, n = top_n)
} else {
markers_top <- dplyr::slice_max(markers, order_by = -abs(.data$lfc_summary), n = top_n * 2)
}
} else if (top_n_wt == "auc") {
markers_top <- dplyr::slice_max(markers, order_by = .data$auc_summary, n = top_n)
}
if (!is_null(distinct_by)) {
markers_top <- dplyr::distinct(markers_top, !!sym(distinct_by), .keep_all = TRUE)
}
return(markers_top)
}
#' @title Make a heatmap of global or contrast markers.
#' @param seu A `Seurat` object.
#' @param params A tibble. See `cluster_markers_heatmap_params` or `contrasts_heatmap_params` target for details.
#' @param marker_type A character scalar.
#' @param save A logical scalar. If `TRUE`, the heatmap will be saved to `params$out_file`.
#' @param return_type A character scalar. For `"file"`, return `params$out_file`.
#' For `"tibble"`, return a modified `params` tibble with appended list columns:
#' - `heatmaps`: contains named lists of heatmap objects (`p_heatmap`, `p_heatmap_z_score`)
#' - `markers_top`: dataframe with top markers used for heatmap generation.
#' @return See the `return_type` argument.
#'
#' @concept sc_markers
#' @export
marker_heatmaps_wrapper <- function(seu,
params,
marker_type = c("global", "contrast"),
save = TRUE,
return_type = c("file", "tibble")) {
marker_type <- arg_match(marker_type)
return_type <- arg_match(return_type)
params <- lapply_rows(params, FUN = function(par) {
subtitle <- glue("{par$test_label}")
if (!is.na(par$block_column)) {
subtitle <- glue("{subtitle} (blocking on {par$block_column})")
}
if (marker_type == "global") {
title <- glue("{par$description}\nMarkers of cluster {par$group_level}")
if (par$top_n_wt_heatmap == "top") {
subtitle <- glue("{subtitle}, top {par$top_n_heatmap} markers from each pairwise comparison")
} else {
subtitle <- glue("{subtitle}, top {par$top_n_heatmap} markers by {par$top_n_wt_heatmap}")
}
} else {
title <- glue("{par$description}\nContrast {par$contrast_name} (target: {par$target}, reference: {par$reference})")
if (par$top_n_wt_heatmap == "top") {
cli_alert_warning("top_n_wt_heatmap 'top' is not possible for contrast heatmaps -> changing to 'fdr'")
par$top_n_wt_heatmap <- "fdr"
}
subtitle <- glue("{subtitle}, top {par$top_n_heatmap} DEGs by {par$top_n_wt_heatmap}")
which_cells_contrast <- which(par$groups %in% c(par$target, par$reference))
par$groups <- par$groups[which_cells_contrast] %>% droplevels()
seu <- seu[, which_cells_contrast]
seu@assays$RNA@scale.data <- t(scale(t(seu@assays$RNA@data)))
}
p_heatmap <- marker_heatmap(
seu = seu,
markers = par$markers,
groups = par$groups,
assay = "RNA",
slot = "data",
top_n = par$top_n_heatmap,
top_n_wt = par$top_n_wt_heatmap,
title = title,
subtitle = subtitle
)
p_heatmap_zscore <- marker_heatmap(
seu = seu,
markers = par$markers,
groups = par$groups,
assay = "RNA",
slot = "scale.data",
top_n = par$top_n_heatmap,
top_n_wt = par$top_n_wt_heatmap,
title = title,
subtitle = subtitle,
fill_scale = ggplot2::scale_fill_gradient2(
low = "#67a9cf", mid = "#f7f7f7", high = "#ef8a62", midpoint = 0, name = "z-score"
)
)
if (save) {
out_dir <- fs::path_dir(par$out_file)
fs::dir_create(out_dir, recurse = TRUE)
if (nrow(p_heatmap$markers_top) >= 50) {
height <- (7 / 50) * nrow(p_heatmap$markers_top)
} else {
height <- NULL
}
grDevices::pdf(par$out_file, useDingbats = FALSE, height = height)
print(p_heatmap$p_heatmap)
print(p_heatmap_zscore$p_heatmap)
grDevices::dev.off()
}
par$heatmaps <- list(p_heatmap = p_heatmap$p_heatmap, p_heatmap_zscore = p_heatmap_zscore$p_heatmap)
par$markers_top <- p_heatmap$markers_top
par$markers <- NULL
return(par)
})
names(params$heatmaps) <- params$id
if (return_type == "file") {
return(params$out_file)
} else if (return_type == "tibble") {
return(params)
}
}
#' @title Make a heatmap of cell clusters.
#' @param seu A `Seurat` object.
#' @param markers A dataframe with markers (returned from [scran_markers()]) or a character vector of gene SYMBOLs.
#' @param groups A character vector: assignment of cells to groups (clusters).
#' @param assay,slot,angle,... Passed to [Seurat::DoHeatmap()].
#' @param top_n,top_n_wt Passed to [filter_markers()]. If `top_n` is `NULL`, all markers in `markers` will be used
#' (`SYMBOL` column in case `markers` is a dataframe-like object).
#' If `top_n` is numeric, `markers` must be a dataframe-like object.
#' @param title A character scalar: heatmap title.
#' @param subtitle A character scalar: heatmap subtitle.
#' @param fill_scale A `Scale` object from `ggplot2`,
#' e.g. `ggplot2::scale_fill_gradient(low = "white", high = "red")` (default).
#' @param y_text_size A numeric scalar: text size on y-axe of the heatmap.
#' @return A named list.
#'
#' @concept sc_markers
#' @export
marker_heatmap <- function(seu,
markers,
groups,
assay = "RNA",
slot = "data",
top_n = 5,
top_n_wt = "fdr",
title = "Heatmap",
subtitle = "",
fill_scale = ggplot2::scale_fill_gradient(low = "white", high = "red"),
y_text_size = 8,
angle = 0,
...) {
# if (inherits(assay(sce, assay), "ResidualMatrix")) {
# assay(sce, "logcounts") <- assay(sce, "logcounts") %>% as.matrix()
# }
gene_annotation <- seu@assays[[assay]]@meta.features
seu <- Seurat::SetIdent(seu, value = groups)
rownames(seu@assays[[assay]]@counts) <- gene_annotation$SYMBOL
rownames(seu@assays[[assay]]@data) <- gene_annotation$SYMBOL
rownames(seu@assays[[assay]]@meta.features) <- gene_annotation$SYMBOL
if (nrow(seu@assays[[assay]]@scale.data) > 0) {
rownames(seu@assays[[assay]]@scale.data) <- gene_annotation$SYMBOL
}
if (!is_null(top_n)) {
assert_that_(dplyr::between(top_n, 1, Inf), msg = "{.var top_n} must be between 1 and Inf")
markers_top <- filter_markers(markers = markers, top_n = top_n, top_n_wt = top_n_wt)
} else {
if (is_character(markers)) {
markers_top <- data.frame(SYMBOL = markers)
} else {
markers_top <- markers
}
}
if (is_empty(markers_top$SYMBOL)) {
p_heatmap <- create_dummy_plot(glue0("{title}\n{subtitle}\nNo top markers were found."))
} else {
p_heatmap <- suppressMessages(
Seurat::DoHeatmap(seu, features = markers_top$SYMBOL, assay = assay, slot = slot, angle = angle, ...) +
fill_scale +
ggtitle(label = title, subtitle = subtitle) +
theme(
axis.text.y = element_text(size = y_text_size),
title = element_text(size = 8),
plot.subtitle = element_text(size = 7)
)
)
}
return(list(p_heatmap = p_heatmap, markers_top = markers_top))
}
#' @title Get a tibble of top markers extracted from each test result.
#' @description This is basically an unnesting of filtered `markers` in each row of `markers_processed`.
#' The filtering is based on `top_n_plot` and `top_n_wt_plot` columns in `markers_plot_params`.
#' @param markers_processed A tibble. See `cluster_markers_processed` or `contrasts` target for details.
#' @param markers_plot_params A tibble. See `cluster_markers_plot_params` or `contrasts_plot_params` for details.
#' @param out_dir A character scalar: path to base output directory for plots.
#' Subdirectories and plot files will be created as
#' `<clustering_name>/<dimred>/<ENSEMBL>_<SYMBOL>_<clustering_name>_<dimred>.pdf`.
#' @param marker_type A character scalar.
#' @return A tibble. See `cluster_markers_plots_top` or `contrasts_plots_top` target for details.
#'
#' @concept sc_markers
#' @export
markers_plots_top <- function(markers_processed, markers_plot_params, out_dir, marker_type = c("global", "contrast")) {
marker_type <- arg_match(marker_type)
markers_processed <- dplyr::select(markers_processed, .data$source_column, .data$test_type, .data$markers)
if (marker_type == "global") {
markers_plot_params <- dplyr::select(markers_plot_params, -.data$name)
}
res <- dplyr::left_join(markers_processed, markers_plot_params, by = c("source_column", "test_type")) %>%
dplyr::rowwise() %>%
dplyr::mutate(
markers_top = list(
filter_markers(markers = .data$markers, top_n = .data$top_n_plot, top_n_wt = .data$top_n_wt_plot) %>%
dplyr::select(dplyr::all_of(c("ENSEMBL", "SYMBOL", "ENTREZID", "GENENAME")))
),
markers = NULL
) %>%
dplyr::ungroup() %>%
tidyr::unnest(.data$markers_top, names_repair = "minimal") %>%
dplyr::distinct(.data$source_column, .data$plot_dimreds, .data$ENSEMBL, .keep_all = TRUE) %>%
dplyr::select(dplyr::all_of(c("source_column", "plot_dimreds", "ENSEMBL", "SYMBOL", "groups"))) %>%
dplyr::mutate(
out_file = fs::path(
.env$out_dir,
.data$source_column,
.data$plot_dimreds,
glue("{ENSEMBL}_{SYMBOL}_{source_column}_{plot_dimreds}.pdf")
)
)
return(res)
}
#' @title Make a marker plot.
#' @description A marker plot is composed of:
#' - Two plots of a dimred: one colored by a clustering, and second colored by expression of a marker (feature plot).
#' - A plot of summarized marker expression: proportion of cells expressing a marker, colored by average expression.
#' - A violin plot: expression of a marker in each cluster.
#' @param sce A `SingleCellExperiment` object.
#' @param dimred_name A character scalar.
#' @param gene_ensembl_id A character scalar. ENSEMBL ID of a marker.
#' @param group
#' - A character scalar: name of column in `colData(sce)` by which are cells separated (e.g. clustering).
#' - A character vector or factor: assignment of cells to groups (clusters). Must have the same length as the number
#' of cells (columns) in `sce`.
#' @param cluster_plot_title,cluster_plot_subtitle,cluster_plot_legend_title,cluster_plot_label
#' A character scalar. Applied to the dimred plot which is colored by `group`.
#' @param cluster_plot_point_size A numeric scalar.
#' @param feature_plot_point_size A numeric scalar. Applied to the feature plot.
#' @param vln_plot_legend_title A character scalar. Applied to the violin plot.
#' @return A `patchwork` object.
#'
#' @concept sc_markers
#' @export
marker_plot <- function(sce,
dimred_name,
gene_ensembl_id,
group,
cluster_plot_title = NULL,
cluster_plot_subtitle = NULL,
cluster_plot_legend_title = NULL,
cluster_plot_label = TRUE,
cluster_plot_point_size = 1,
feature_plot_point_size = 1,
vln_plot_legend_title = NULL) {
# if (inherits(assay(sce, "logcounts"), "ResidualMatrix")) {
# assay(sce, "logcounts") <- assay(sce, "logcounts") %>% as.matrix()
# }
if (is_scalar_character(group)) {
assert_that_(group %in% colnames(colData(sce)), msg = "Column {.val {group}} not found in {.code colnames(colData(sce))}")
group_name <- group
} else {
sce <- sce_add_colData(sce, df = data.frame(group = group))
group_name <- "group"
}
if (cluster_plot_label) {
cluster_plot_label <- group_name
} else {
cluster_plot_label <- NULL
}
if (is_null(vln_plot_legend_title)) {
vln_plot_legend_title <- group_name
}
gene_annotation <- rowData(sce)[gene_ensembl_id, ]
gene_symbol <- gene_annotation$SYMBOL
gene_title <- glue("{gene_symbol} ({gene_ensembl_id})")
p_clusters <- plotReducedDim_mod(
sce,
dimred = dimred_name,
colour_by = group_name,
text_by = cluster_plot_label,
title = cluster_plot_title,
subtitle = cluster_plot_subtitle,
legend_title = cluster_plot_legend_title,
point_size = cluster_plot_point_size
) +
theme(
legend.position = "top",
legend.justification = "center",
plot.title = element_text(hjust = 0.5),
plot.subtitle = element_text(hjust = 0.5)
)
p_expression <- plotReducedDim_mod(
sce,
dimred = dimred_name,
colour_by = gene_ensembl_id,
title = gene_title
) +
guides(color = ggplot2::guide_colorbar(barwidth = 5, title.vjust = 0.9)) +
labs(color = "log2(expression)") +
p_clusters$theme
p_dot <- scater::plotDots(
sce,
features = gene_ensembl_id,
group = group_name,
color = c("lightgrey", "blue")
) +
guides(color = ggplot2::guide_colorbar(barwidth = 8, title.vjust = 0.9)) +
labs(title = gene_title, x = NULL) +
p_clusters$theme +
theme(
axis.title.y = element_blank(),
axis.text.y = element_blank(),
axis.ticks.y = element_blank(),
axis.line.y = element_blank(),
legend.justification = "center"
)
p_vln <- plot_vln(
sce,
ensembl_id = gene_ensembl_id,
groups = group_name,
labs = labs(title = NULL, x = vln_plot_legend_title, y = "log2(expression)", fill = vln_plot_legend_title)
) +
guides(color = "none") +
p_clusters$theme
p <- (p_clusters | p_expression) / p_dot / p_vln
p <- p + patchwork::plot_layout(height = c(1, 0.25, 1))
return(p)
}
#' @title Make plots of top markers.
#' @param sce_dimred A `SingleCellExperiment` object with computed dimreds.
#' @param markers_plots_top A tibble, output from [markers_plots_top()].
#' See `cluster_markers_plots_top` or `contrasts_plots_top` target for details.
#' @param save A logical scalar: if `TRUE`, save each plot to `markers_top$out_file`.
#' @param dry A logical scalar: if `TRUE`, do not make plots and just create empty files.
#' @param return_type A character scalar:
#' - `"file"`: return `markers_top$out_file`.
#' - `"plot"`: return list of marker plots.
#' - `"tibble"`: return a modified `markers_plots_top` tibble with appended `marker_plot` column (list of marker plots).
#' @return See the `return_type` argument.
#' See `cluster_markers_plots_files` or `contrasts_plots_files` target for details.
#'
#' @seealso [marker_plot()]
#'
#' @concept sc_markers
#' @export
markers_plots_files <- function(sce_dimred, markers_plots_top, save = TRUE, dry = FALSE, return_type = c("file", "plot", "tibble")) {
return_type <- arg_match(return_type)
markers_plots_top <- lapply_rows(markers_plots_top, FUN = function(par) {
if (!dry) {
p <- suppressMessages(marker_plot(
sce_dimred,
dimred_name = par$plot_dimreds,
gene_ensembl_id = par$ENSEMBL,
group = par$groups,
cluster_plot_title = par$source_column,
# cluster_plot_legend_title = source_column,
cluster_plot_legend_title = "",
# vln_plot_legend_title = source_column
vln_plot_legend_title = "",
))
par$marker_plot <- p
} else {
par$marker_plot <- NA
# p <- ggplot() +
# ggplot2::theme_void() +
# ggplot2::geom_text(aes(x = 0, y = 0, label = "Marker plots were disabled."))
}
# par$marker_plot <- p
if (save) {
out_dir <- fs::path_dir(par$out_file)
fs::dir_create(out_dir, recurse = TRUE)
if (dry) {
fs::file_create(par$out_file)
} else {
ggplot2::ggsave(par$out_file, p, device = "pdf", width = 10, height = 10, useDingbats = FALSE)
}
}
return(par)
})
names(markers_plots_top$marker_plot) <- markers_plots_top$ENSEMBL
if (return_type == "file") {
return(markers_plots_top$out_file)
} else if (return_type == "plot") {
return(markers_plots_top$marker_plot)
} else if (return_type == "tibble") {
return(markers_plots_top)
}
}
#' @title Make dimred plots for each marker source defined in `CLUSTER_MARKERS_SOURCES` (`cluster_markers.yaml` config)
#' or `CONTRASTS_SOURCES` (`contrasts.yaml` config).
#' @param sce_final_norm_clustering A `SingleCellExperiment` object with computed dimreds and clusterings.
#' @param markers_dimred_plots_params A tibble. See `cluster_markers_dimred_plot_params` or
#' `contrasts_dimred_plot_params` for details.
#' @return A modified `markers_dimred_plots_params` tibble with appended `plot` column (list of `ggplot2` objects).
#' See `cluster_markers_dimred_plots` or `contrasts_dimred_plots` target for details.
#'
#' @concept sc_markers
#' @export
markers_dimred_plots <- function(sce_final_norm_clustering, markers_dimred_plots_params) {
markers_dimred_plots_params <- lapply_rows(markers_dimred_plots_params, FUN = function(par) {
p <- plotReducedDim_mod(
sce_final_norm_clustering,
dimred = par$plot_dimreds,
colour_by = par$source_column,
title = glue("{par$source_column} | {str_to_upper(par$plot_dimreds)}"),
use_default_ggplot_palette = TRUE,
legend_title = par$source_column,
text_by = par$source_column
) + theme(legend.position = "bottom", legend.direction = "horizontal")
par$plot <- list(p)
return(par)
})
names(markers_dimred_plots_params$plot) <- glue(
"{markers_dimred_plots_params$source_column}_{markers_dimred_plots_params$plot_dimreds}"
)
return(markers_dimred_plots_params)
}
#' @title Save dimred plots.
#' @param markers_dimred_plots A tibble. See `cluster_markers_dimred_plots` or `contrasts_dimred_plots` for details.
#' @param markers_dimred_plots_base_out_dir A character scalar: path to base output directory to save dimred plots in.
#' @return A modified `markers_dimred_plots` tibble with appended `out_file` column.
#' See `cluster_markers_dimred_plots_files` or `contrasts_dimred_plots_files` target for details.
#'
#' @concept sc_markers
#' @export
markers_dimred_plots_files <- function(markers_dimred_plots, markers_dimred_plots_base_out_dir) {
markers_dimred_plots <- lapply_rows(markers_dimred_plots, FUN = function(par) {
out_file <- fs::path(
markers_dimred_plots_base_out_dir,
par$source_column,
glue("{par$source_column}_{par$plot_dimreds}.pdf")
)
fs::dir_create(fs::path_dir(out_file))
ggplot2::ggsave(out_file, par$plot, device = "pdf", useDingbats = FALSE)
par$out_file <- out_file
return(par)
})
return(markers_dimred_plots)
}
#' @title Convert specified columns of a marker table to HTML links.
#' @param df A dataframe-like object.
#' @param links A list of named lists. Each named list has three items:
#' - `colname_target`: which column in `df` will be converted to link.
#' - `colname_source`: which column in `df` will be used as data source.
#' - `template_url`: URL template for link where `{id}` will be replaced by values in `colname_source` column of `df`.
#' For `ENSEMBL` column is also used the `ensembl_species` parameter (see the default value of `links`).
#' @param ensembl_species A character scalar: ID/name of ENSEMBL species.
#' @return A modified `df`.
#'
#' @concept sc_markers
#' @export
add_marker_table_links <- function(df,
links = list(
list(
colname_target = "ENSEMBL",
colname_source = "ENSEMBL",
template_url = "https://www.ensembl.org/{ensembl_species}/Gene/Summary?g={id}"
),
list(
colname_target = "ENTREZID",
colname_source = "ENTREZID",
template_url = "https://www.ncbi.nlm.nih.gov/gene/{id}"
),
list(
colname_target = "SYMBOL",
colname_source = "SYMBOL",
template_url = "https://www.genecards.org/cgi-bin/carddisp.pl?gene={id}"
)
),
ensembl_species = "Homo_sapiens") {
# df_orig <- df %>%
# dplyr::mutate(SYMBOL = dplyr::if_else(is.na(SYMBOL), ENSEMBL, SYMBOL))
df_orig <- df %>%
dplyr::mutate(SYMBOL = dplyr::if_else(.data$ENSEMBL == .data$SYMBOL, "", .data$SYMBOL))
for (link in links) {
colname_target <- link$colname_target
colname_source <- link$colname_source
id <- df_orig[, colname_source] %>%
stringr::str_remove_all(" ")
urls <- dplyr::if_else(
!is.na(id),
gluec(link$template_url, id = id, ensembl_species = ensembl_species),
NA_character_
)
url_texts <- df_orig[, colname_target]
df[[colname_target]] <- dplyr::if_else(
!is.na(url_texts),
gluec("<a href='{urls}' target='_blank'>{url_texts}</a>"),
NA_character_
)
}
return(df)
}
#' @title Make a table used in HTML report of marker results.
#' @description It combines marker statistics, parameters, dimred plots, and links to heatmaps.
#' @param markers_out A tibble. See `cluster_markers_out` or `contrasts_out` target for details.
#' @param markers_heatmaps_df A tibble. See `cluster_markers_heatmaps_df` or `contrasts_heatmaps_df` for details.
#' @param markers_plots_top A tibble.
#' See `cluster_markers_plots_top` or `contrasts_plots_top` for details.
#' @param markers_dimred_plots_files A tibble.
#' See `cluster_markers_dimred_plots_files` or `contrasts_dimred_plots_files` for details.
#' @param out_dir A character scalar: path to base output directory to save HTML tables in.
#' Files and subdirectories will be created as:
#' - `<source_name>/<source_name>_<test_type>_<group_level>.html` for cluster markers.
#' Example: `markers_cluster_kmeans_k4/markers_cluster_kmeans_k4_t_1.html`
#' - `<source_name>/<source_name>_<test_type>_<target_level>_vs_<reference_level>.html` for contrasts.
#' Example: `dea_cluster_louvain_annotated/dea_cluster_louvain_annotated_binom_cl3_vs_cl4.html`
#' @param ensembl_species A character scalar: passed to [add_marker_table_links()].
#' @param ... Currently not used.
#' @return A tibble. See `cluster_markers_for_tables` or `contrasts_for_tables` for details.
#'
#' @concept sc_markers
#' @export
markers_for_tables <- function(markers_out, markers_heatmaps_df, markers_plots_top, markers_dimred_plots_files, out_dir,
ensembl_species = "Homo_sapiens",
...) {
markers_heatmaps_df <- markers_heatmaps_df %>%
dplyr::select(.data$id, .data$description, .data$test_label, heatmap_file = .data$out_file)
markers_plots_top <- markers_plots_top %>%
dplyr::select(.data$source_column, .data$plot_dimreds, .data$ENSEMBL, .data$out_file) %>%
dplyr::group_by(.data$source_column, .data$ENSEMBL) %>%
dplyr::summarise(
source_column = dplyr::first(.data$source_column),
ENSEMBL = dplyr::first(.data$ENSEMBL),
plot_dimreds = list(.data$plot_dimreds),
out_file = list(.data$out_file)
) %>%
dplyr::ungroup() %>%
dplyr::group_by(.data$source_column) %>%
tidyr::nest(marker_plots = -.data$source_column) %>%
dplyr::ungroup()
markers_dimred_plots_files <- markers_dimred_plots_files %>%
dplyr::group_by(.data$source_column) %>%
tidyr::nest(dimred_plots = c(.data$plot_dimreds, .data$plot, .data$out_file)) %>%
dplyr::ungroup()
res <- dplyr::left_join(markers_out, markers_heatmaps_df, by = "id") %>%
dplyr::left_join(markers_dimred_plots_files, by = "source_column") %>%
dplyr::left_join(markers_plots_top, by = "source_column") %>%
dplyr::mutate(
markers = purrr::map2(.data$markers, .data$marker_plots, ~ dplyr::left_join(.x, .y, by = "ENSEMBL")),
out_file = fs::path(out_dir, .data$name, glue("{id}.html"))
) %>%
dplyr::mutate(markers = purrr::map(.data$markers, ~ add_marker_table_links(., ensembl_species = ensembl_species))) %>%
dplyr::select(-dplyr::any_of(c("test_params_name", "groups", "blocks", "marker_plots")))
return(res)
}
#' @title Prepare a table with markers and render a HTML report from RMarkdown template.
#' @param markers_for_tables A tibble. File paths in column `out_file` will be used to save rendered HTML files.
#' See `cluster_markers_for_tables` or `contrasts_for_tables` target for details.
#' @param rmd_template A character scalar: path to RMarkdown file.
#' @param marker_type A character scalar.
#' @param drake_cache_dir A character scalar: path to `drake` cache directory.
#' @return A character vector: `markers_for_tables$out_file`.
#'
#' @concept sc_markers
#' @export
markers_table_files <- function(markers_for_tables,
rmd_template,
marker_type = c("global", "contrast"),
drake_cache_dir = ".drake") {
marker_type <- arg_match(marker_type)
markers_for_tables <- lapply_rows(markers_for_tables, FUN = function(par) {
par$markers <- par$markers %>%
dplyr::rowwise() %>%
dplyr::mutate(
plot = purrr::map2_chr(
.data$out_file, .data$plot_dimreds,
function(.x, .y) {
if (is.na(.x)) {
""
} else {
create_a_link(.x, str_to_upper(.y), href_rel_start = fs::path_dir(par$out_file))
}
}
) %>%
str_comma(),
out_file = NULL,
plot_dimreds = NULL
) %>%
dplyr::ungroup() %>%
dplyr::select(.data$ENSEMBL, .data$ENTREZID, .data$SYMBOL, .data$GENENAME, .data$plot, dplyr::everything())
par$heatmap_file_rel <- purrr::map2_chr(
par$heatmap_file, par$out_file,
~ create_a_link(.x, "Heatmap", href_rel_start = fs::path_dir(.y), class = "btn btn-primary", role = "button")
)
if (marker_type == "global") {
title <- glue("Cluster markers for '{par$source_column}' (level: '{par$group_level}'), {par$test_label}")
} else {
title <- glue(
"Results for contrast '{par$contrast_name}' (factor: '{par$source_column}', ",
"target: '{par$target}', reference: '{par$reference}'), {par$test_label}"
)
}
if (!is_na(par$block_column)) {
title <- glue("{title} (blocking on '{par$block_column}')")
}
intermediates_dir <- fs::file_temp()
fs::dir_create(intermediates_dir)
rmarkdown::render(
rmd_template,
output_dir = fs::path_dir(par$out_file),
output_file = fs::path_file(par$out_file),
params = list(
title = title,
drake_cache_dir = drake_cache_dir,
other_params = par
),
intermediates_dir = intermediates_dir,
envir = new.env(),
quiet = TRUE
)
fs::dir_delete(intermediates_dir)
return(par)
})
return(markers_for_tables$out_file)
}
#' @title Generate a table with links to marker results.
#' @description This function is used directly in Rmd files for its side effects (in chunks with `results = "asis"`).
#' @param df A dataframe-like object.
#' @param group_var A character scalar: name of grouping variable for `df`.
#' @param dt_order_by A character scalar: name of column in `df` to order rows by.
#' @param base_out_dir A character scalar: path to base out dir for `cluster_markers` or `contrasts` stage.
#' Used to determine relative paths from rendered HTML files to PDF files (marker plots, heatmaps).
#' @return Invisibly `NULL`.
#'
#' @concept sc_markers
#' @export
generate_markers_results_section <- function(df, group_var, dt_order_by, base_out_dir) {
df <- dplyr::group_by(df, !!sym(group_var)) %>%
dplyr::select(
.data$name, .data$source_column,
dplyr::any_of(c("group_level", "contrast_name", "target", "reference")),
.data$test_type, .data$block_column,
dplyr::everything()
) %>%
dplyr::mutate(
heatmap = purrr::map_chr(.data$heatmap_file, ~ create_a_link(., "PDF", href_rel_start = base_out_dir)),
markers = purrr::map_chr(.data$out_file, ~ create_a_link(., "Link", href_rel_start = base_out_dir))
) %>%
dplyr::select(-dplyr::all_of(c(
"id", "description", "test_label", "heatmap_file", "dimred_plots", "out_file"
)))
df_list <- dplyr::group_split(df) %>%
set_names(dplyr::group_keys(df) %>% dplyr::pull(!!sym(group_var)))
if (!any(names(df_list) %in% c("binom", "t", "wilcox"))) {
df_list <- df_list[order(names(df_list))]
}
z <- lapply(names(df_list), function(name) {
md_header(name, 4)
res <- df_list[[name]]
dt <- DT::datatable(
res,
# filter = "top",
rownames = FALSE,
escape = FALSE,
width = "100%",
class = "display compact",
options = list(
pageLength = 100,
order = list(which(colnames(res) == dt_order_by) - 1, "asc"),
autoWidth = TRUE,
lengthMenu = list(list(10, 25, 50, -1), list(10, 25, 50, "All"))
)
)
print(htmltools::tagList(dt))
})
invisible(NULL)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.