R/response2sample.R

Defines functions response2sample

Documented in response2sample

#' @title response2sample
#' @description List the most strongly associated response of a given subnetwork for each sample.
#' @param model A NetResponseModel object or list. 
#' @param subnet.id Subnet id. A natural number which specifies one of the
#' subnetworks within the 'model' object.
#' @param component.list List samples separately for each mixture component
#' (TRUE). Else list the most strongly associated component for each sample
#' (FALSE).
#' @param verbose Follow progress by intermediate messages.
#' @param data Data (features x samples; or a vector for univariate case) to predict response for given data points (currently implemented only for mixture.model output)
#'
#' Return:
#' @return A list. Each element corresponds to one subnetwork response, and
#' contains a list of samples that are associated with the response (samples
#' for which this response has the highest probability P(response | sample)).
#' @author Leo Lahti \email{leo.lahti@@iki.fi}
#' @references Leo Lahti et al.: Global modeling of transcriptional responses
#' in interaction networks. Bioinformatics (2010).  See citation('netresponse')
#' for citation details.
#' @keywords utilities
#' @export
#' @examples
#' # Load example data
#' data( toydata )         # Load toy data set
#' D    <- toydata$emat    # Response matrix (for example, gene expression)
#' model <- toydata$model  # Pre-calculated model
#' 
#' # Find the samples for each response (for a given subnetwork)
#' response2sample(model, subnet.id = 1)
#' 
response2sample <- function(model, subnet.id = NULL, component.list = TRUE, verbose = FALSE, 
    data = NULL) {
    
    if (is(model) == "NetResponseModel") {
        
        if (is.numeric(subnet.id)) {
            subnet.id <- paste("Subnet", subnet.id, sep = "-")
            warning("subnet.id given as numeric; converting to character: ", subnet.id, 
                sep = "")
        }
        
        response.probabilities <- model[[subnet.id]]$qofz  # sample2response(model, subnet.id)
        
        rownames(response.probabilities) <- rownames(model@datamatrix)
        
    } else if (is(model) == "list") {
        
        if (!is.null(model$qofz)) {
            # Pick response probabilities from the model object
            response.probabilities <- model$qofz
        } else {
            # Otherwise, retrieve the response probabilities assuming the input data and
            # parameters are presented on the same basis For mixture.model output
            if (is.vector(data)) {
                data2 <- t(matrix(data))
                colnames(data2) <- names(data)
                rownames(data2) <- "Mode-1"
                data <- data2
                data2 <- NULL
            }
            
            # Find cluster for each sample
            response.probabilities <- P.r.s(data, model$params, log = TRUE)
            # rownames(response.probabilities) <- colnames(data)
            colnames(response.probabilities) <- paste("Mode", seq_len(ncol(response.probabilities)), 
                sep = "-")
        }
    }
    
    # For each sample, list the most strongly associated response (highest P(r|s))
    clusters <- apply(response.probabilities, 1, which.max)
    
    if (length(clusters) == 0) {
        warning(paste("Error with response2sample in subnet", subnet.id))
    } else if (component.list) {
        # list samples separately for each cluster
        clusters <- lapply(seq(max(clusters)), function(i) {
            if (is.null(names(clusters))) {
                which(clusters == i)
            } else {
                names(which(clusters == i))
            }
        })
        
        names(clusters) <- paste("Mode-", seq_len(length(clusters)), sep = "")
        if (length(clusters) < ncol(response.probabilities)) {
            n <- ncol(response.probabilities) - length(clusters)
            clusters <- c(clusters, vector(n, mode = "list"))
        }
    }
    
    clusters
    
}
antagomir/netresponse documentation built on March 30, 2023, 7:24 a.m.