Description Usage Arguments Value Examples
View source: R/pathwayAnalysis.R
This function performes gene set enrichment analysis using Wilcoxon Rank Sum test.
1 | pathwayRankBasedEnrichment(geneStats, annotation, alter = "greater")
|
geneStats |
an array of statistics (e.g. log2 FC) of all quantified genes or phosphosite with names of the array as gene or phosphosite IDs. |
annotation |
a list of pathways with each element containing an array of gene IDs. |
alter |
test for enrichment ('greater', default), depletion ('less'), or 'two.sided'. |
A matrix of pathways and their associated substrates and p-values.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 | library(limma)
data('phospho_L6_ratio')
data('SPSs')
grps = gsub('_.+', '', colnames(phospho.L6.ratio))
# Cleaning phosphosite label
phospho.site.names = rownames(phospho.L6.ratio)
L6.sites = gsub(' ', '', sapply(strsplit(rownames(phospho.L6.ratio), '~'),
function(x){paste(toupper(x[2]), x[3], '',
sep=';')}))
phospho.L6.ratio = t(sapply(split(data.frame(phospho.L6.ratio), L6.sites),
colMeans))
phospho.site.names = split(phospho.site.names, L6.sites)
# Construct a design matrix by condition
design = model.matrix(~ grps - 1)
# phosphoproteomics data normalisation using RUV
ctl = which(rownames(phospho.L6.ratio) %in% SPSs)
phospho.L6.ratio.RUV = RUVphospho(phospho.L6.ratio, M = design, k = 3,
ctl = ctl)
# divides the phospho.L6.ratio data into groups by phosphosites
L6.sites <- gsub(' ', '', gsub('~[STY]', '~',
sapply(strsplit(rownames(phospho.L6.ratio.RUV), '~'),
function(x){paste(toupper(x[2]), x[3], sep='~')})))
phospho.L6.ratio.sites <- t(sapply(split(data.frame(phospho.L6.ratio.RUV),
L6.sites), colMeans))
# fit linear model for each phosphosite
f <- gsub('_exp\\d', '', colnames(phospho.L6.ratio.RUV))
X <- model.matrix(~ f - 1)
fit <- lmFit(phospho.L6.ratio.RUV, X)
# extract top-ranked phosphosites for each condition compared to basal
table.AICAR <- topTable(eBayes(fit), number=Inf, coef = 1)
table.Ins <- topTable(eBayes(fit), number=Inf, coef = 3)
table.AICARIns <- topTable(eBayes(fit), number=Inf, coef = 2)
DE1.RUV <- c(sum(table.AICAR[,'adj.P.Val'] < 0.05),
sum(table.Ins[,'adj.P.Val'] < 0.05),
sum(table.AICARIns[,'adj.P.Val'] < 0.05))
# extract top-ranked phosphosites for each group comparison
contrast.matrix1 <- makeContrasts(fAICARIns-fIns, levels=X)
contrast.matrix2 <- makeContrasts(fAICARIns-fAICAR, levels=X)
fit1 <- contrasts.fit(fit, contrast.matrix1)
fit2 <- contrasts.fit(fit, contrast.matrix2)
table.AICARInsVSIns <- topTable(eBayes(fit1), number=Inf)
table.AICARInsVSAICAR <- topTable(eBayes(fit2), number=Inf)
DE2.RUV <- c(sum(table.AICARInsVSIns[,'adj.P.Val'] < 0.05),
sum(table.AICARInsVSAICAR[,'adj.P.Val'] < 0.05))
o <- rownames(table.AICARInsVSIns)
Tc <- cbind(table.Ins[o,'logFC'], table.AICAR[o,'logFC'],
table.AICARIns[o,'logFC'])
rownames(Tc) = gsub('(.*)(;[A-Z])([0-9]+)(;)', '\\1;\\3;', o)
colnames(Tc) <- c('Ins', 'AICAR', 'AICAR+Ins')
# summary phosphosite-level information to proteins for performing downstream
# gene-centric analyses.
Tc.gene <- phosCollapse(Tc, id=gsub(';.+', '', rownames(Tc)),
stat=apply(abs(Tc), 1, max), by = 'max')
# 1D gene-centric pathway analysis
path2 <- pathwayRankBasedEnrichment(Tc.gene[,1],
annotation=Pathways.reactome,
alter = 'greater')
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.