Description Usage Arguments Value Examples
Perform a minmax standardisation to scale data into 0 to 1 range
1 | minmax(mat)
|
mat |
a matrix with rows correspond to phosphosites and columns correspond to condition |
Minmax standardised matrix
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 | data('phospho_L6_ratio')
data('SPSs')
grps = gsub('_.+', '', colnames(phospho.L6.ratio))
# Cleaning phosphosite label
phospho.site.names = rownames(phospho.L6.ratio)
L6.sites = gsub(' ', '', sapply(strsplit(rownames(phospho.L6.ratio), '~'),
function(x){paste(toupper(x[2]), x[3], '',
sep=';')}))
phospho.L6.ratio = t(sapply(split(data.frame(phospho.L6.ratio), L6.sites),
colMeans))
phospho.site.names = split(phospho.site.names, L6.sites)
# Construct a design matrix by condition
design = model.matrix(~ grps - 1)
# phosphoproteomics data normalisation using RUV
ctl = which(rownames(phospho.L6.ratio) %in% SPSs)
phospho.L6.ratio.RUV = RUVphospho(phospho.L6.ratio, M = design, k = 3,
ctl = ctl)
phosphoL6 = phospho.L6.ratio.RUV
rownames(phosphoL6) = phospho.site.names
# filter for up-regulated phosphosites
phosphoL6.mean <- meanAbundance(phosphoL6, grps = gsub('_.+', '',
colnames(phosphoL6)))
aov <- matANOVA(mat=phosphoL6, grps=gsub('_.+', '', colnames(phosphoL6)))
phosphoL6.reg <- phosphoL6[(aov < 0.05) &
(rowSums(phosphoL6.mean > 0.5) > 0),,drop = FALSE]
L6.phos.std <- standardise(phosphoL6.reg)
rownames(L6.phos.std) <- sapply(strsplit(rownames(L6.phos.std), '~'),
function(x){gsub(' ', '', paste(toupper(x[2]), x[3], '', sep=';'))})
L6.phos.seq <- sapply(strsplit(rownames(phosphoL6.reg), '~'),
function(x)x[4])
numMotif = 5
numSub = 1
ks.profile.list <- kinaseSubstrateProfile(PhosphoSite.mouse, L6.phos.std)
motif.mouse.list = PhosR::motif.mouse.list
motif.mouse.list.filtered <-
motif.mouse.list[which(motif.mouse.list$NumInputSeq >= numMotif)]
ks.profile.list.filtered <-
ks.profile.list[which(ks.profile.list$NumSub >= numSub)]
# scoring all phosphosites against all motifs
motifScoreMatrix <-
matrix(NA, nrow=nrow(L6.phos.std),
ncol=length(motif.mouse.list.filtered))
rownames(motifScoreMatrix) <- rownames(L6.phos.std)
colnames(motifScoreMatrix) <- names(motif.mouse.list.filtered)
# extracting flanking sequences
seqWin = mapply(function(x) {
mid <- (nchar(x)+1)/2
substr(x, start=(mid-7), stop=(mid+7))
}, L6.phos.seq)
print('Scoring phosphosites against kinase motifs:')
for(i in seq_len(length(motif.mouse.list.filtered))) {
motifScoreMatrix[,i] <-
frequencyScoring(seqWin, motif.mouse.list.filtered[[i]])
cat(paste(i, '.', sep=''))
}
motifScoreMatrix <- minmax(motifScoreMatrix)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.