Description Usage Arguments Value Examples
View source: R/kinaseSubstratePrediction.R
This function generates substrate scores for kinases that pass filtering based on both motifs and dynamic profiles
1 | kinaseSubstrateScore(substrate.list, mat, seqs, numMotif = 5, numSub = 1)
|
substrate.list |
a list of kinases with each element containing an array of substrates. |
mat |
a matrix with rows correspond to phosphosites and columns correspond to samples. |
seqs |
an array containing aa sequences surrounding each of all phosphosites. Each sequence has length of 15 (-7, p, +7). |
numMotif |
minimum number of sequences used for compiling motif for each kinase. Default is 5. |
numSub |
minimum number of phosphosites used for compiling phosphorylation profile for each kinase. Default is 1. |
A list of 4 elements.
motifScoreMatrix
, profileScoreMatrix
,
combinedScoreMatrix
, ksActivityMatrix
(kinase activity matrix)
and their weights
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 | data('phospho_L6_ratio')
data('SPSs')
data('PhosphoSitePlus')
grps = gsub('_.+', '', colnames(phospho.L6.ratio))
# Cleaning phosphosite label
phospho.site.names = rownames(phospho.L6.ratio)
L6.sites = gsub(' ', '', sapply(strsplit(rownames(phospho.L6.ratio), '~'),
function(x){paste(toupper(x[2]), x[3], '',
sep=';')}))
phospho.L6.ratio = t(sapply(split(data.frame(phospho.L6.ratio), L6.sites),
colMeans))
phospho.site.names = split(phospho.site.names, L6.sites)
# Construct a design matrix by condition
design = model.matrix(~ grps - 1)
# phosphoproteomics data normalisation using RUV
ctl = which(rownames(phospho.L6.ratio) %in% SPSs)
phospho.L6.ratio.RUV = RUVphospho(phospho.L6.ratio, M = design, k = 3,
ctl = ctl)
phosphoL6 = phospho.L6.ratio.RUV
rownames(phosphoL6) = phospho.site.names
# filter for up-regulated phosphosites
phosphoL6.mean <- meanAbundance(phosphoL6,
grps = gsub('_.+', '', colnames(phosphoL6)))
aov <- matANOVA(mat=phosphoL6, grps=gsub('_.+', '', colnames(phosphoL6)))
phosphoL6.reg <- phosphoL6[(aov < 0.05) &
(rowSums(phosphoL6.mean > 0.5) > 0),,drop = FALSE]
L6.phos.std <- standardise(phosphoL6.reg)
rownames(L6.phos.std) <- sapply(strsplit(rownames(L6.phos.std), '~'),
function(x){gsub(' ', '', paste(toupper(x[2]), x[3], '', sep=';'))})
L6.phos.seq <- sapply(strsplit(rownames(phosphoL6.reg), '~'),
function(x)x[4])
L6.matrices <- kinaseSubstrateScore(PhosphoSite.mouse, L6.phos.std,
L6.phos.seq, numMotif = 5, numSub = 1)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.