kinaseSubstratePred: kinaseSubstratePred

Description Usage Arguments Value Examples

View source: R/kinaseSubstratePrediction.R

Description

A machine learning approach for predicting specific kinase for a given substrate. This prediction framework utilise adaptive sampling.

Usage

1
2
3
4
5
6
7
8
kinaseSubstratePred(
    phosScoringMatrices,
    ensembleSize = 10,
    top = 50,
    cs = 0.8,
    inclusion = 20,
    iter = 5
)

Arguments

phosScoringMatrices

An output of kinaseSubstrateScore.

ensembleSize

An ensemble size.

top

a number to select top kinase substrates.

cs

Score threshold.

inclusion

A minimal number of substrates required for a kinase to be selected.

iter

A number of iterations for adaSampling.

Value

Kinase prediction matrix

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
data('phospho_L6_ratio')
data('SPSs')

grps = gsub('_.+', '', colnames(phospho.L6.ratio))

# Cleaning phosphosite label
phospho.site.names = rownames(phospho.L6.ratio)
L6.sites = gsub(' ', '', sapply(strsplit(rownames(phospho.L6.ratio), '~'),
                                function(x){paste(toupper(x[2]), x[3], '',
                                                sep=';')}))
phospho.L6.ratio = t(sapply(split(data.frame(phospho.L6.ratio), L6.sites),
                            colMeans))
phospho.site.names = split(phospho.site.names, L6.sites)

# Construct a design matrix by condition
design = model.matrix(~ grps - 1)

# phosphoproteomics data normalisation using RUV
ctl = which(rownames(phospho.L6.ratio) %in% SPSs)
phospho.L6.ratio.RUV = RUVphospho(phospho.L6.ratio, M = design, k = 3,
                                ctl = ctl)


phosphoL6 = phospho.L6.ratio.RUV
rownames(phosphoL6) = phospho.site.names

# filter for up-regulated phosphosites
phosphoL6.mean <- meanAbundance(phosphoL6,
                                grps = gsub('_.+', '', colnames(phosphoL6)))
aov <- matANOVA(mat=phosphoL6, grps=gsub('_.+', '', colnames(phosphoL6)))
phosphoL6.reg <- phosphoL6[(aov < 0.05) &
                        (rowSums(phosphoL6.mean > 0.5) > 0),,drop = FALSE]
L6.phos.std <- standardise(phosphoL6.reg)
rownames(L6.phos.std) <- sapply(strsplit(rownames(L6.phos.std), '~'),
    function(x){gsub(' ', '', paste(toupper(x[2]), x[3], '', sep=';'))})

L6.phos.seq <- sapply(strsplit(rownames(phosphoL6.reg), '~'),
                    function(x)x[4])

L6.matrices <- kinaseSubstrateScore(PhosphoSite.mouse, L6.phos.std,
    L6.phos.seq, numMotif = 5, numSub = 1)
set.seed(1)
L6.predMat <- kinaseSubstratePred(L6.matrices, top=30)

PengyiYang/PhosR documentation built on June 21, 2020, 8:37 a.m.