#' Impute missing values/NAs with KNN
#'
#' @name imputeKNN
#'
#' @param obj Input SummarizedExperiment object
#' @param rowmax Maximum fraction of NAs that can exist in a row
#' @param colmax Maximum fraction of NAs that can exist in a column/sample
#' @param k Number of neighbors to be used in the imputation
#' @param maxp Largest block of regions/loci imputed using KNN
#' @param in.place Whether to modify the Beta/counts in place (default: TRUE)
#' @param drop.sparse.samps Whether to drop samples that are too sparse (default: TRUE)
#' @param assay The type of assay ("array", "atac", "bisulfite")
#'
#' @return Imputed data matrix that is added to the assays slot
#' @import impute
#' @import SummarizedExperiment
#' @export
#'
#' @examples
#' data("meth_array_450k_chr14", package = "compartmap")
#' #impute
#' imputed <- imputeKNN(array.data.chr14, assay = "array")
imputeKNN <- function(obj, rowmax = 0.5, colmax = 0.8, k = 10,
maxp = 1500, in.place = TRUE, drop.sparse.samps = TRUE,
assay = c("array", "atac", "bisulfite")) {
#match the assay args
assay <- match.arg(assay)
#double check the obj class is compatible
if (!checkAssayType(obj)) stop("Input needs to be a SummarizedExperiment")
#check the names of the assays
if (!any(getAssayNames(obj) %in% c("Beta", "counts"))) {
stop("The assay slot should contain either 'Beta' for arrays or 'counts' for atac/bisulfite.")
}
#stop early if there aren't any NAs to impute
if (!any(is.na(assay(obj)))) stop("No NAs found. Nothing to impute.")
#filter out missing data based on chosen rowmax
#otherwise imputation will blow up
obj.clean <- cleanAssayRows(obj, rowmax = rowmax, assay = assay)
#drop samples that have too sparse of data to use
#this is the way to filter to samples with sufficient signal
#before getting single cell imputation up
if (drop.sparse.samps) {
message("Dropping samples with >", colmax*100, "% NAs.")
obj.clean <- cleanAssayCols(obj.clean, colmax = colmax, assay = assay)
#stop if all the samples are now gone...
if (ncol(obj.clean) == 0) {
message("No samples left after sparisty filtering.")
stop("Consider increasing the value of colmax closer to 1 and increasing maxp.")
}
} else {
warning("Imputation may not work with samples that are too sparse!")
}
#check to see if array values are still on the beta scale...
if (assay == "array") {
is.beta <- ifelse(min(assays(obj.clean)$Beta, na.rm = TRUE) < 0, FALSE, TRUE)
if (!is.beta) {
#send things back to beta land
assays(obj.clean)$Beta <- fexpit(assays(obj.clean)$Beta)
}
}
#get the appropriate matrix and impute with kNN
message("Imputing missing data with kNN.")
imputed.data <- switch(assay,
#use squeezed M-values to impute
array = impute.knn(flogit(assays(obj.clean)$Beta), k = k,
rowmax = rowmax, colmax = colmax,
maxp = maxp)$data,
atac = impute.knn(assays(obj.clean)$counts, k = k,
rowmax = rowmax, colmax = colmax,
maxp = maxp)$data,
bisulfite = impute.knn(assays(obj.clean)$counts, k = k,
rowmax = rowmax, colmax = colmax,
maxp = maxp)$data)
#add on another counts matrix to the assays slot if not in.place
if (!in.place) {
assays(obj.clean)$imputed.data <- imputed.data
} else {
switch(assay,
#send squeezed M-values back to beta
array = assays(obj.clean)$Beta <- fexpit(imputed.data),
atac = assays(obj.clean)$counts <- imputed.data,
bisulfite = assays(obj.clean)$counts <- imputed.data)
}
return(obj.clean)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.