Nothing
#' @param spectra list, 2 MSnbase::Spectrum2 objects
#' @param sequences list, 2 character vectors containing the peptide sequences
#' for spectra and fragments
#' @param fragments, characters vector containing the fragment.str
#' @param tolerance double, allowed deviation
#' @param ... passed to MSnbase:::.plotSingleSpectrum
#' @noRd
.plotFragmentsVsSpectrum <- function(spectra, sequences, fragments,
tolerance=25e-6, ...) {
spectra <- lapply(spectra, normalize, method="precursor")
if (missing(sequences)) {
sequences <- character(2)
}
mass <- unlist(lapply(spectra, mz))
## if both spectra are removed because of NeutralLoss=TRUE
if (length(mass)) {
xlim <- c(min(mass, na.rm=TRUE), max(mass, na.rm=TRUE))
} else {
xlim <- c(0, 0)
}
inten <- unlist(lapply(spectra, intensity))
maxInten <- max(c(0, inten), na.rm=TRUE)
ylim <- c(-maxInten, maxInten)
oldPar <- par(no.readonly=TRUE)
on.exit(par(oldPar))
par(mar=c(2, 2, 2, 0.5)) #c(bottom, left, top, right)
.plotSpectrumVsSpectrum(
spectra,
sequences=unlist(sequences),
common=list(MSnbase:::commonPeaks(spectra[[1]],
spectra[[2]],
tolerance=tolerance),
MSnbase:::commonPeaks(spectra[[2]],
spectra[[1]],
tolerance=tolerance)),
fragments=list(data.frame(mz=mz(spectra[[1]]), ion=fragments,
stringsAsFactors=FALSE),
data.frame()),
main="Identification Fragments vs Quantitation Spectrum",
xlim=xlim, ylim=ylim, ...)
}
#' plot spectrum1 vs spectrum2
#' @param spectra list, 2 MSnbase::Spectrum2 objects
#' @param sequences character vector (length==2) containing the peptide
#' sequences for both spectra
#' @param common list (length==2), containing logical vector for common peaks
#' @param fragments list (length==2), containing fragments data.frames
#' @param gridSearchResult character
#' @param fragments.cex cex for fragments
#' @param legend.cex cex for legend
#' @param ... passed to MSnbase:::.plotSingleSpectrum
#' @noRd
.plotSpectrumVsSpectrum <- function(spectra,
sequences,
common,
fragments=vector(mode="list", length=2),
gridSearchResult,
xlim, ylim,
legend.cex=1, ...) {
orientation <- c(1, -1)
add <- c(FALSE, TRUE)
legend.pos <- c("topleft", "bottomleft")
legend.prefix <- c("ident", "quant")
## colors: ColorBrewer RdYlBu c(9, 11, 3, 1)
cols <- c("#74ADD1", "#313695", "#F46D43", "#A50026")
pch <- c(NA, 19)
for (i in seq(along=spectra)) {
if (!length(common[[i]])) {
common[[i]] <- logical(peaksCount(spectra[[i]]))
}
MSnbase:::.plotSingleSpectrum(spectra[[i]],
sequence=sequences[[i]],
fragments=fragments[[i]],
orientation=orientation[i],
add=add[i], xlim=xlim, ylim=ylim,
col=cols[(i-1)*2+common[[i]]+1],
pch=pch[common[[i]]+1], ...)
label <- paste0(legend.prefix[i], " prec leID: ",
precScanNum(spectra[[i]]))
if (peaksCount(spectra[[i]])) {
label <- paste0(label, ", prec mass: ", round(precursorMz(spectra[[i]]), 3),
", prec z: ", precursorCharge(spectra[[i]]),
", # common: ", sum(common[[i]]),
", match: ", gridSearchResult)
if (isTRUE(nzchar(sequences[i], keepNA=TRUE))) {
label <- paste0(label, ",\nseq: ", sequences[i])
}
}
legend(legend.pos[i], legend=label, bty="n", cex=legend.cex)
}
}
#' fragment matching workhorse function
#' compares ident fragments vs quant product spectrum
#' @param flatEmrts flattened EMRTs (see flatMatchedEMRTs)
#' @param identFragments MSnExp of the identification fragments
#' @param quantSpectra MSnExp of the quantitation spectra
#' @param tolerance double, allowed deviation to consider a m/z as equal
#' @param verbose verbose output?
#' @return data.frame, extend/flatted matchedEmrts df with additional columns:
#' gridSearchResult, FragmentMatching
#' @noRd
.fragmentMatching <- function(flatEmrts, identFragments, quantSpectra,
tolerance=25e-6, verbose=interactive()) {
if (verbose) {
message("Look for common peaks")
pb <- txtProgressBar(0, nrow(flatEmrts), style=3)
}
for (i in 1:nrow(flatEmrts)) {
flatEmrts[i, "FragmentMatching"] <-
MSnbase:::numberOfCommonPeaks(
.getSpectrum(flatEmrts$precursor.leID.ident[i], identFragments),
.getSpectrum(flatEmrts$matched.quant.spectrumIDs[i], quantSpectra),
tolerance=tolerance)
if (verbose) {
setTxtProgressBar(pb, i)
}
}
if (verbose) {
close(pb)
message("Calculate Differences")
}
flatEmrts <- .fragmentMatchingDifferences(flatEmrts)
return(flatEmrts)
}
#' calculate difference between first highest and second highest number of
#' common peaks in a non-unique match group
#' @param fm data.frame
#' @return modified fm data.frame
#' @noRd
.fragmentMatchingDifferences <- function(fm) {
# use only non-unique matches
idx <- fm$matchedEMRTs > 1
fm$FragmentMatchingRank <- fm$FragmentMatchingDiff <- NA
fm$FragmentMatchingRank[idx] <- ave(fm$FragmentMatching[idx],
fm$precursor.leID.ident[idx],
FUN=function(x)rank(-x))
fm$FragmentMatchingDiff[idx] <- ave(fm$FragmentMatching[idx],
fm$precursor.leID.ident[idx],
FUN=function(x)diff(sort(x, decreasing=TRUE)[2:1]))
return(fm)
}
#' plot FragmentMatching
#' @param obj synapter object
#' @param key all rows with a matching "key" in "column" are plotted.
#' If missing everything is plotted.
#' @param column in which column we should look for "key"
#' @param verbose verbose output?
#' @noRd
.plotFragmentMatching <- function(obj, key, column="peptide.seq", verbose=interactive(),
...) {
fm <- obj$FragmentMatching
if (!column %in% colnames(fm)) {
stop(sQuote("column"), "=", column, " is not a valid column of the ",
"FragmentMatching data.frame!")
}
if (missing(key) && verbose) {
message(sQuote("key"), " is missing. Plotting everything.")
}
if (!missing(key)) {
fm <- fm[which(fm[, column] %in% key), ]
if (!nrow(fm)) {
stop("No row matches your criteria!")
}
}
if (verbose) {
pb <- txtProgressBar(0, nrow(fm), style=3)
}
for (i in 1:nrow(fm)) {
.plotCxRow(fmrow=fm[i, ],
identFragments=obj$IdentFragmentData,
quantSpectra=obj$QuantSpectrumData,
...)
if (verbose) {
setTxtProgressBar(pb, i)
}
}
if (verbose) {
close(pb)
}
}
#' @param fmrow a single row of the FragmentMatching df
#' @param identFragments MSnExp of the identification fragments
#' @param quantSpectra MSnExp of the quantitation spectra
#' @param legend.cex cex for legend text
#' @param fragments.cex cex for fragment text
#' @noRd
.plotCxRow <- function(fmrow, identFragments, quantSpectra,
legend.cex=0.6, fragments.cex=0.5,
...) {
keys <- unlist(fmrow[,c("precursor.leID.ident", "matched.quant.spectrumIDs")])
spectra <- list(ident=.getSpectrum(keys[1], identFragments),
quant=.getSpectrum(keys[2], quantSpectra))
sequences <- mapply(function(x, k) {
## avoid partial matching of rows
## ( [.data.frame always use partial match for rows; exact=TRUE works only
## for column names)
return(fData(x)[match(k, rownames(fData(x))), "peptide.seq"])
}, x=list(identFragments, quantSpectra), k=keys,
SIMPLIFY=FALSE, USE.NAMES=FALSE)
fragments <- na.omit(MSnbase:::utils.ssv2vec(
fData(identFragments)[match(keys[1], rownames(fData(identFragments))), "fragment.str"]))
.plotFragmentsVsSpectrum(spectra=spectra,
sequences=sequences,
fragments=fragments,
gridSearchResult=fmrow$gridSearchResult,
legend.cex=legend.cex,
fragments.cex=fragments.cex,
...)
}
#' plot fm performance
#' @param fm fm data.frame
#' @param showAllPeptides show all peptides in plot?
#' @return invisible list with two elements (unique,nonunique) each containing a
#' matrix of 3 columns threshold, true, false
#' @noRd
.plotFragmentMatchingPerformance <- function(fm, showAllPeptides=FALSE) {
l <- setNames(vector(mode="list", length=2), c("unique", "nonunique"))
what <- c("unique", "non-unique")
xlab <- c("# of common peaks", "delta common peaks")
par(mfcol=c(1, 2))
for (i in seq(along=l)) {
l[[i]] <- .fragmentMatchingContingencyMatrix(fm, what=what[i])
col <- c("#808080", 4, 2)
legend <- c("all peptides",
"true matches (merged data)",
"false matches (merged data)")
if (showAllPeptides) {
ylim <- range(l[[i]][, c("tp", "fp", "all")], na.rm=TRUE)
} else {
ylim <- range(l[[i]][, c("tp", "fp")], na.rm=TRUE)
col <- col[-1]
legend <- legend[-1]
}
plot(l[[i]][, 1], l[[i]][, "all"],
type=ifelse(showAllPeptides, "b", "n"),
lty=1, pch=ifelse(l[[i]][, "all"], 19, 1),
ylim=ylim, col="#808080", xlab=xlab[i], ylab="# of peptides",
main=paste("performance", what[i]))
lines(l[[i]][, 1], l[[i]][, "tp"], type="b",
pch=ifelse(l[[i]][, "tp"], 19, 1), col=2)
lines(l[[i]][, 1], l[[i]][, "fp"], type="b",
pch=ifelse(l[[i]][, "fp"], 19, 1), col=4)
grid()
legend("topright", legend=legend, col=col, lwd=1, pch=19, bty="n")
}
par(mfcol=c(1, 1))
invisible(l)
}
#' @param fm FragmentMatching df, result of .fragmentMatching
#' @param what character unique/non-unique
#' @return matrix with cols threshold,
#' @noRd
.fragmentMatchingConfusionMatrix <- function(fm, what=c("unique", "non-unique")) {
what <- match.arg(what)
fmsub <- fm[grep(paste0("^", what), fm$gridSearchResult), ]
rcol <- "FragmentMatchingRank"
if (what == "unique") {
fmsub[, rcol] <- 1
mcol <- "FragmentMatching"
} else {
mcol <- "FragmentMatchingDiff"
}
train <- tapply(1:nrow(fmsub), fmsub$precursor.leID.ident, function(i) {
ytrain <- any(grepl("true$", fmsub$gridSearchResult[i]) &
fmsub[i, rcol] == 1)
xtrain <- fmsub[i[which.min(fmsub[i, rcol])], mcol]
cbind(xtrain, ytrain)
}, simplify=FALSE)
train <- do.call(rbind, train)
xtrain <- train[, 1]
ytrain <- train[, 2]
thresholds <- 0:max(xtrain, na.rm=TRUE)
allfm <- fm[, mcol]
allfm[is.na(allfm)] <- 0
confusion <- t(sapply(thresholds, function(th) {
tp <- sum(xtrain >= th & ytrain)
fp <- sum(xtrain >= th & !ytrain)
tn <- sum(xtrain < th & !ytrain)
fn <- sum(xtrain < th & ytrain)
al <- sum(allfm >= th)
c(tp=tp, fp=fp, tn=tn, fn=fn, all=al)
}))
confusion <- cbind(thresholds, confusion)
colnames(confusion)[1] <- ifelse(what == "unique", "ncommon", "deltacommon")
rownames(confusion) <- NULL
confusion
}
#' @param fm FragmentMatching df, result of .fragmentMatching
#' @param what character unique/non-unique
#' @param mcol column name of the matching results (e.g.
#' fragments.identXfragments.quant)
#' @return matrix with cols tp, fp, tn, fn
#' @noRd
.fragmentMatchingContingencyMatrix <- function(fm, what) {
confusion <- .fragmentMatchingConfusionMatrix(fm, what)
return(cbind(confusion, fdr=diagnosticErrors(confusion)[, "fdr"]))
}
#' filter unique matches
#' @param obj synapter object
#' @param mincommon a correct match must have at least "mincommon" common peaks
#' @return filtered emrts data.frame
#' @noRd
.filterUniqueMatches <- function(obj, mincommon) {
emrts <- obj$MatchedEMRTs
fm <- obj$FragmentMatching
if ("matchedEMRTs.beforeFilterUniqueMatches" %in% colnames(emrts)) {
warning("This function should not used multiple times. It removes your ",
"original ", sQuote("matchedEMRTs"), " column.", immediate.=TRUE)
}
fm <- fm[fm$precursor.leID.ident %in% emrts$precursor.leID.ident &
fm$matchedEMRTs == 1, ]
keep <- fm$FragmentMatching >= mincommon
if (!any(keep)) {
stop("No EMRT match your criteria! Try a lower threshold")
}
rows <- match(fm$precursor.leID.ident, emrts$precursor.leID.ident)
exclude <- rows[!keep]
## backup function
emrts$matchedEMRTs.beforeFilterUniqueMatches <- emrts$matchedEMRTs
emrts$matchedEMRTs[rows] <- 1
if (length(exclude)) {
# comment the next line and uncomment the over next line to *not* remove the
# filtered emrts
#emrts <- emrts[-exclude, ]
emrts$matchedEMRTs[exclude] <- -1
# set Counts to NA; see https://github.com/lgatto/synapter/issues/85
emrts$Counts[exclude] <- NA
}
return(emrts)
}
#' filter nonunique matches
#' @param obj synapter object
#' @param mindelta a correct match must have at least "nmin" common peaks
#' @return filtered emrts data.frame
#' @noRd
.filterNonUniqueMatches <- function(obj, mindelta) {
emrts <- obj$MatchedEMRTs
fm <- obj$FragmentMatching
if ("matchedEMRTs.beforeFilterNonUniqueMatches" %in% colnames(emrts)) {
warning("This function should not used multiple times. It removes your ",
"original ", sQuote("matchedEMRTs"), " column.", immediate.=TRUE)
}
fm <- fm[fm$precursor.leID.ident %in% emrts$precursor.leID.ident &
fm$matchedEMRTs > 1, ]
keep <- fm$FragmentMatchingDiff >= mindelta & fm$FragmentMatchingRank == 1
if (!any(keep)) {
stop("No EMRT match your criteria! Try a lower threshold")
}
rows <- match(fm$precursor.leID.ident, emrts$precursor.leID.ident)
exclude <- rows[!keep]
## backup function
emrts$matchedEMRTs.beforeFilterNonUniqueMatches <- emrts$matchedEMRTs
if (length(exclude)) {
## this order is important because include could contain row numbers that
## are present in keep as well (because fm has many duplicated
## precursor.leID.idents)
# see https://github.com/lgatto/synapter/issues/93
emrts$matchedEMRTs[exclude] <- -2
# set Counts to NA; see https://github.com/lgatto/synapter/issues/85
emrts$Counts[exclude] <- NA
emrts$matchedEMRTs[rows[keep]] <- 1
cols <- c("precursor.leID.quant",
## pep3d data
"spectrumID", "rt_min", "mwHPlus", "charge", "Intensity",
"Counts", "clust_drift", "isFid", "ion_ID", "ion_z", "ion_iso",
"ion_area", "ion_counts", "Model", "isotopicDistr", "idSource")
emrts[rows[keep], cols] <- fm[keep, cols]
}
return(emrts)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.