Description Usage Arguments Details Value Author(s) References See Also Examples
fabi
: R implementation of fabia
, therefore it is slow.
1 |
X |
the data matrix. |
p |
number of hidden factors = number of biclusters; default = 13. |
alpha |
sparseness loadings (0-1.0); default = 0.01. |
cyc |
number of iterations; default = 500. |
spl |
sparseness prior loadings (0 - 2.0); default = 0 (Laplace). |
spz |
sparseness factors (0.5-2.0); default = 0.5 (Laplace). |
center |
data centering: 1 (mean), 2 (median), > 2 (mode), 0 (no); default = 2. |
norm |
data normalization: 1 (0.75-0.25 quantile), >1 (var=1), 0 (no); default = 1. |
lap |
minimal value of the variational parameter; default = 1.0. |
Biclusters are found by sparse factor analysis where both the factors and the loadings are sparse.
Essentially the model is the sum of outer products of vectors:
X = ∑_{i=1}^{p} λ_i z_i^T + U
where the number of summands p is the number of biclusters. The matrix factorization is
X = L Z + U
Here λ_i are from R^n, z_i from R^l, L from R^{n \times p}, Z from R^{p \times l}, and X, U from R^{n \times l}.
If the nonzero components of the sparse vectors are grouped together then the outer product results in a matrix with a nonzero block and zeros elsewhere.
We recommend to normalize the components to variance one in order to make the signal and noise comparable across components.
The model selection is performed by a variational approach according to Girolami 2001 and Palmer et al. 2006.
We included a prior on the parameters and minimize a lower bound on the posterior of the parameters given the data. The update of the loadings includes an additive term which pushes the loadings toward zero (Gaussian prior leads to an multiplicative factor).
The code is implemented in R, therefore it is slow.
|
object of the class |
Sepp Hochreiter
S. Hochreiter et al., ‘FABIA: Factor Analysis for Bicluster Acquisition’, Bioinformatics 26(12):1520-1527, 2010. http://bioinformatics.oxfordjournals.org/cgi/content/abstract/btq227
Mark Girolami, ‘A Variational Method for Learning Sparse and Overcomplete Representations’, Neural Computation 13(11): 2517-2532, 2001.
J. Palmer, D. Wipf, K. Kreutz-Delgado, B. Rao, ‘Variational EM algorithms for non-Gaussian latent variable models’, Advances in Neural Information Processing Systems 18, pp. 1059-1066, 2006.
fabia
,
fabias
,
fabiap
,
spfabia
,
fabi
,
fabiasp
,
mfsc
,
nmfdiv
,
nmfeu
,
nmfsc
,
extractPlot
,
extractBic
,
plotBicluster
,
Factorization
,
projFuncPos
,
projFunc
,
estimateMode
,
makeFabiaData
,
makeFabiaDataBlocks
,
makeFabiaDataPos
,
makeFabiaDataBlocksPos
,
matrixImagePlot
,
fabiaDemo
,
fabiaVersion
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 | #---------------
# TEST
#---------------
dat <- makeFabiaDataBlocks(n = 100,l= 50,p = 3,f1 = 5,f2 = 5,
of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0)
X <- dat[[1]]
Y <- dat[[2]]
resEx <- fabi(X,3,0.01,20)
## Not run:
#---------------
# DEMO1
#---------------
dat <- makeFabiaDataBlocks(n = 1000,l= 100,p = 10,f1 = 5,f2 = 5,
of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0)
X <- dat[[1]]
Y <- dat[[2]]
resToy <- fabi(X,13,0.01,200)
extractPlot(resToy,ti="FABI",Y=Y)
#---------------
# DEMO2
#---------------
avail <- require(fabiaData)
if (!avail) {
message("")
message("")
message("#####################################################")
message("Package 'fabiaData' is not available: please install.")
message("#####################################################")
} else {
data(Breast_A)
X <- as.matrix(XBreast)
resBreast <- fabi(X,5,0.1,200)
extractPlot(resBreast,ti="FABI Breast cancer(Veer)")
#sorting of predefined labels
CBreast
}
#---------------
# DEMO3
#---------------
avail <- require(fabiaData)
if (!avail) {
message("")
message("")
message("#####################################################")
message("Package 'fabiaData' is not available: please install.")
message("#####################################################")
} else {
data(Multi_A)
X <- as.matrix(XMulti)
resMulti <- fabi(X,5,0.1,200)
extractPlot(resMulti,ti="FABI Multiple tissues(Su)")
#sorting of predefined labels
CMulti
}
#---------------
# DEMO4
#---------------
avail <- require(fabiaData)
if (!avail) {
message("")
message("")
message("#####################################################")
message("Package 'fabiaData' is not available: please install.")
message("#####################################################")
} else {
data(DLBCL_B)
X <- as.matrix(XDLBCL)
resDLBCL <- fabi(X,5,0.1,200)
extractPlot(resDLBCL,ti="FABI Lymphoma(Rosenwald)")
#sorting of predefined labels
CDLBCL
}
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.