Description Usage Arguments Details Value Author(s) See Also Examples
extractPlot
: R implementation of extractPlot
.
1 | extractPlot(fact,thresZ=0.5,ti="",thresL=NULL,Y=NULL,which=c(1,2,3,4,5,6))
|
fact |
object of the class |
thresZ |
threshold for sample belonging to bicluster; default 0.5. |
thresL |
threshold for loading belonging to bicluster (estimated if not given). |
ti |
plot title; default "". |
Y |
noise free data matrix. |
which |
which plot is shown: 1=noise free data (if available), 2=data, 3=reconstructed data, 4=error, 5=absolute factors, 6=absolute loadings; default c(1,2,3,4,5,6). |
Essentially the model is the sum of outer products of vectors:
X = ∑_{i=1}^{p} λ_i z_i^T + U
where the number of summands p is the number of biclusters. The matrix factorization is
X = L Z + U
Here λ_i are from R^n, z_i from R^l, L from R^{n \times p}, Z from R^{p \times l}, and X, U from R^{n \times l}.
The hidden dimension p is used for kmeans clustering of λ_i and z_i .
The λ_i and z_i are used to extract the bicluster i, where a threshold determines which observations and which samples belong the the bicluster.
The method produces following plots depending what plots are chosen by the "which" variable:
“Y”: noise free data (if available), “X”: data, “LZ”: reconstructed data, “LZ-X”: error, “abs(Z)”: absolute factors, “abs(L)”: absolute loadings.
Implementation in R.
Returns corresponding plots
Sepp Hochreiter
fabia
,
fabias
,
fabiap
,
fabi
,
fabiasp
,
spfabia
,
mfsc
,
nmfdiv
,
nmfeu
,
nmfsc
,
extractPlot
,
extractBic
,
plotBicluster
,
Factorization
,
projFuncPos
,
projFunc
,
estimateMode
,
makeFabiaData
,
makeFabiaDataBlocks
,
makeFabiaDataPos
,
makeFabiaDataBlocksPos
,
matrixImagePlot
,
fabiaDemo
,
fabiaVersion
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 | #---------------
# TEST
#---------------
dat <- makeFabiaDataBlocks(n = 100,l= 50,p = 3,f1 = 5,f2 = 5,
of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0)
X <- dat[[1]]
Y <- dat[[2]]
resEx <- fabia(X,3,0.1,20)
extractPlot(resEx,ti="FABIA",Y=Y)
## Not run:
#---------------
# DEMO1
#---------------
dat <- makeFabiaDataBlocks(n = 1000,l= 100,p = 10,f1 = 5,f2 = 5,
of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0)
X <- dat[[1]]
Y <- dat[[2]]
resToy <- fabia(X,13,0.01,200)
extractPlot(resToy,ti="FABIA",Y=Y)
#---------------
# DEMO2
#---------------
avail <- require(fabiaData)
if (!avail) {
message("")
message("")
message("#####################################################")
message("Package 'fabiaData' is not available: please install.")
message("#####################################################")
} else {
data(Breast_A)
X <- as.matrix(XBreast)
resBreast <- fabia(X,5,0.1,200)
extractPlot(resBreast,ti="FABIA Breast cancer(Veer)")
#sorting of predefined labels
CBreast
}
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.