Description Usage Arguments Value Author(s) See Also Examples
multivariateConditions
is simply an accessor for the
multivariateConditions
slot of a
CountDataSet
object
plotDispLSD
is a function similar to
plotDispEsts
that adds a density estimate as a colored heatmap from grey (few) to yellow
(many).
plotDispersionEstimates
offers the functionality to plot
the dispersion estimate as described in the DESeq vignette.
1 2 3 4 5 | multivariateConditions(obj)
plotDispLSD(obj, name = NULL, ymin,
linecol = "#00000080", xlab = "mean of normalized counts",
ylab = "dispersion", log = "xy", cex = 0.45, ...)
plotDispersionEstimates(obj,cond,log,...)
|
obj |
An object of class |
cex |
The standard |
cond |
A character string describing the first condition. |
linecol |
Defines the line color. |
log |
A character string passed onto
|
name |
Argument passed to the DESeq
|
xlab |
The standard
|
ylab |
The standard
|
ymin |
A numeric value defining the lower limit for the y axis. |
... |
Additional plotting parameters. |
multivariateConditions
returns a boolean describing
whether the data to analyze is multivariate or not
plotDispLSD
and plotDispersionEstimates
returns nothing
Nicolas Delhomme, Bastian Schiffthaler
1 2 3 4 5 6 7 8 9 10 | ## Not run:
# these are helper function for the DESeq package
# refer to its vignette first
cds <- newCountDataSet(countData,conditions)
cds <- estimateSizeFactors(cds)
cds <- estimateDispersions(cds)
mVar <- multivariateConditions(cds)
plotDispersionEstimates(cds,conditions[1])
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.