plotDist: Plot data distribution histograms

Description Usage Arguments Value Examples

View source: R/plotDist.R

Description

This function is to plot data distribution histogram before and after anscombe transformation.

Usage

1
plotDist(countData, ansCount, sampleName, plotDataToPDF = FALSE)

Arguments

countData

A RangedSummarizedExperiment-class object from getRegionCounts with count data.

ansCount

A RangedSummarizedExperiment-class object from ansTransform with anscombe transformed data.

sampleName

Name of the sample being plotted.

plotDataToPDF

A logical parameter indicating whether to make plots of the data distribution to a separate PDF file for each sample. When TRUE, a histogram will be plotted for the data before and after transformation. When FALSE, no plots will be made. (default: FALSE)

Value

A list of the histogram of the count data before and after anscombe transformation if plotDataToPDF == FALSE. None if plotDataToPDF == TRUE.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
exRange <- GRanges(seqnames=c("chr1","chr2","chr3","chr4"),
ranges=IRanges(start=c(1000,2000,3000,4000),end=c(1500,2500,3500,4500)))
sampleInfo <- read.table(system.file("extdata", "sample_info.txt", 
package="CSSQ",mustWork = TRUE),sep="\t",header=TRUE)
exCount <- matrix(c(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),nrow=4,ncol=4)
exData <- SummarizedExperiment(assays = list(countData=exCount),
rowRanges=exRange,colData=sampleInfo)
ansExData <- ansTransform(exData)
plotEx <- plotDist(exData,ansExData,"HESC_R1")
plotEx[[1]]

CSSQ documentation built on Nov. 8, 2020, 6:47 p.m.