Description Usage Arguments Value Examples
This function quantifies each each region for a sample and performs background correction and normalization as instructed. Returns a vector of count information for the input regions.
1 | ansTransform(countData, noNeg = TRUE, plotDataToPDF = FALSE)
|
countData |
A
|
noNeg |
A Logical parameter indicating how to deal with negative values. When TRUE (default), all negative values will be moved to 0 before transforming. When FALSE, the signs will be maintained while the transformation will be applied to the absolute value. (default: TRUE) |
plotDataToPDF |
A logical parameter indicating whether to make plots of the data distribution to a separate PDF file for each sample. When TRUE, a histogram will be plotted for the data before and after transformation. When FALSE, no plots will be made. (default: FALSE) |
A
RangedSummarizedExperiment-class
object
containing the anscombe transformed count data as the assay.
1 2 3 4 5 6 7 8 9 | exRange <- GRanges(seqnames=c("chr1","chr2","chr3","chr4"),
ranges=IRanges(start=c(1000,2000,3000,4000),end=c(1500,2500,3500,4500)))
sampleInfo <- read.table(system.file("extdata", "sample_info.txt",
package="CSSQ",mustWork = TRUE),sep="\t",header=TRUE)
exCount <- matrix(c(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),nrow=4,ncol=4)
exData <- SummarizedExperiment(assays = list(countData=exCount),
rowRanges=exRange,colData=sampleInfo)
ansExData <- ansTransform(exData)
assays(ansExData)$ansCount
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.