Description Usage Arguments Value See Also Examples
View source: R/normalizeData.R
This function iterates over kmeansNormalize
to perform
normalization for all samples in the dataset. It returns an
RangedSummarizedExperiment-class
object normalized counts, cluster information and the variance of that
cluster for that sample.
1 | normalizeData(ansData, numClusters = 4)
|
ansData |
|
numClusters |
A number indicating the number of clusters to use for k-means clustering. (default: 4) |
RangedSummarizedExperiment-class
containing the
normalized counts, cluster information and the variance of the cluster in
the sample.
kmeansNormalize
which this function calls.
1 2 3 4 5 6 7 8 9 | exRange <- GRanges(seqnames=c("chr1","chr2","chr3","chr4"),
ranges=IRanges(start=c(1000,2000,3000,4000),end=c(1500,2500,3500,4500)))
sampleInfo <- read.table(system.file("extdata", "sample_info.txt",
package="CSSQ",mustWork = TRUE),sep="\t",header=TRUE)
exCount <- matrix(c(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),nrow=4,ncol=4)
exData <- SummarizedExperiment(assays = list(ansCount=exCount),
rowRanges=exRange,colData=sampleInfo)
normExData <- normalizeData(exData,numClusters=2)
assays(normExData)$normCount
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.