R/14_tools4metaboliteIdentification.R

Defines functions plotMS2match identify_peak metIdentification

Documented in identify_peak metIdentification

#---------------------------------------------------------------------------
#' Metabolite Identification Using MS1 and MS2 Data
#'
#' This function performs metabolite identification by matching MS1 and MS2 data from a given experiment with a reference spectral database. The function supports matching based on mass-to-charge ratio (m/z), retention time (RT), and MS2 fragmentation patterns.
#'
#' @param ms1.info A data frame containing MS1 information, including m/z, retention time (RT), and other relevant data.
#' @param ms2.info A list containing MS2 fragmentation spectra corresponding to the MS1 data.
#' @param polarity A character string specifying the ionization mode. It can be either `"positive"` or `"negative"`. Defaults to `"positive"`.
#' @param ce A character string specifying the collision energy for MS2 matching. Defaults to `'30'`. Can be set to `"all"` to use all available collision energies.
#' @param database A `databaseClass` object containing the reference spectral database.
#' @param ms1.match.ppm A numeric value specifying the mass accuracy threshold for MS1 matching in parts per million (ppm). Defaults to `25`.
#' @param ms2.match.ppm A numeric value specifying the mass accuracy threshold for MS2 matching in ppm. Defaults to `30`.
#' @param mz.ppm.thr A numeric value specifying the m/z threshold in ppm for matching MS1 and MS2. Defaults to `400`.
#' @param ms2.match.tol A numeric value specifying the tolerance for MS2 fragment ion matching. Defaults to `0.5`.
#' @param rt.match.tol A numeric value specifying the retention time matching tolerance in seconds. Defaults to `30`.
#' @param column A character string specifying the chromatographic column type, either `"hilic"` (hydrophilic interaction) or `"rp"` (reverse phase). Defaults to `"rp"`.
#' @param ms1.match.weight A numeric value specifying the weight of MS1 matching in the total score calculation. Defaults to `0.25`.
#' @param rt.match.weight A numeric value specifying the weight of RT matching in the total score calculation. Defaults to `0.25`.
#' @param ms2.match.weight A numeric value specifying the weight of MS2 matching in the total score calculation. Defaults to `0.5`.
#' @param total.score.tol A numeric value specifying the threshold for the total score. Defaults to `0.5`.
#' @param candidate.num A numeric value specifying the number of top candidates to retain per feature. Defaults to `3`.
#' @param adduct.table A data frame containing adduct information for metabolite matching.
#' @param threads An integer specifying the number of threads to use for parallel processing. Defaults to `3`.
#' @param fraction.weight A numeric value specifying the weight for the MS2 fragmentation score. Defaults to `0.3`.
#' @param dp.forward.weight A numeric value specifying the weight for the forward dot product in MS2 matching. Defaults to `0.6`.
#' @param dp.reverse.weight A numeric value specifying the weight for the reverse dot product in MS2 matching. Defaults to `0.1`.
#' @param remove_fragment_intensity_cutoff A numeric value specifying the intensity cutoff for removing fragments in MS2 matching. Defaults to `0`.
#'
#' @return A list containing the metabolite identification results, including m/z error, RT error, MS2 matching scores, and information about the identified compounds.
#'
#' @details
#' This function identifies metabolites by comparing the experimental MS1 and MS2 data with a reference spectral database. The matching process considers m/z, retention time, and MS2 fragmentation patterns. Collision energies (CE) can be specified, or all available CEs in the database can be used.
#'
#' The function supports parallel processing using multiple threads to speed up the metabolite identification process.
#'
#' @examples
#' \dontrun{
#' # Perform metabolite identification using MS1 and MS2 data
#' identification_result <- metIdentification(
#'   ms1.info = ms1_data,
#'   ms2.info = ms2_spectra,
#'   polarity = "positive",
#'   ce = "30",
#'   database = reference_database,
#'   ms1.match.ppm = 20,
#'   ms2.match.ppm = 25,
#'   threads = 4
#' )
#' }
#'
#' @author Xiaotao Shen
#' \email{xiaotao.shen@@outlook.com}
#' @importFrom dplyr filter mutate select left_join bind_rows
#' @importFrom BiocParallel bplapply MulticoreParam SnowParam
#' @importFrom crayon yellow green
#' @export

metIdentification <-
  function(ms1.info,
           ms2.info,
           polarity = c("positive", "negative"),
           ce = '30',
           database,
           ms1.match.ppm = 25,
           ms2.match.ppm = 30,
           mz.ppm.thr = 400,
           ms2.match.tol = 0.5,
           rt.match.tol = 30,
           column = "rp",
           ms1.match.weight = 0.25,
           rt.match.weight = 0.25,
           ms2.match.weight = 0.5,
           total.score.tol = 0.5,
           candidate.num = 3,
           adduct.table,
           threads = 3,
           fraction.weight = 0.3,
           dp.forward.weight = 0.6,
           dp.reverse.weight = 0.1,
           remove_fragment_intensity_cutoff = 0) {
    ###Check data
    if (missing(ms1.info)) {
      stop("No ms1.info is provided.\n")
    }
    
    polarity <- match.arg(polarity)
    ms1.info$mz <- as.numeric(ms1.info$mz)
    ms1.info$rt <- as.numeric(ms1.info$rt)
    ##filter the database for using
    ##polarity
    if (polarity == "positive") {
      spectra.data <- database@spectra.data$Spectra.positive
    } else{
      spectra.data <- database@spectra.data$Spectra.negative
    }
    
    ##get the MS2 spectra within the CE values
    if (any(ce == "all")) {
      message(crayon::yellow("Use all CE values."))
      ce <- unique(unlist(lapply(spectra.data, function(x) {
        names(x)
      })))
    } else{
      spectra.data <- lapply(spectra.data, function(x) {
        x <- x[which(names(x) %in% ce)]
        if (length(x) == 0)
          return(NULL)
        return(x)
      })
    }
    
    ##remove some metabolites which have no spectra
    spectra.data <-
      spectra.data[which(!unlist(lapply(spectra.data, is.null)))]
    
    if (length(spectra.data) == 0) {
      stop("No spectra with CE: ",
           paste(ce, collapse = ", "),
           " in you database.\n")
    }
    
    spectra.info <- database@spectra.info
    
    spectra.info <-
      spectra.info[which(spectra.info$Lab.ID %in% names(spectra.data)), ]
    
    rm(list = c("database"))
    message("\n")
    message(crayon::green('Identifing metabolites with MS/MS database...'))
    
    if (masstools::get_os() == "windows") {
      bpparam = BiocParallel::SnowParam(workers = threads, progressbar = TRUE)
    } else{
      bpparam = BiocParallel::MulticoreParam(workers = threads, progressbar = TRUE)
    }
    
    #####bug fixing
    # for(i in  seq_len(nrow(ms1.info))){
    #   cat(i, " ")
    #   identify_peak(idx = i,
    #                ms1.info = ms1.info,
    #                ms2.info = ms2.info,
    #                spectra.info = spectra.info,
    #                spectra.data = spectra.data,
    #                ppm.ms1match = ms1.match.ppm,
    #                ppm.ms2match = ms2.match.ppm,
    #                mz.ppm.thr = mz.ppm.thr,
    #                ms2.match.tol = ms2.match.tol,
    #                rt.match.tol = rt.match.tol,
    #                ms1.match.weight = ms1.match.weight,
    #                rt.match.weight = rt.match.weight,
    #                ms2.match.weight = ms2.match.weight,
    #                total.score.tol = total.score.tol,
    #                adduct.table = adduct.table,
    #                candidate.num = candidate.num,
    #                fraction.weight = fraction.weight,
    #                dp.forward.weight = dp.forward.weight,
    #                dp.reverse.weight = dp.reverse.weight,
    #                remove_fragment_intensity_cutoff = remove_fragment_intensity_cutoff
    #                )
    # }
    
    identification_result <-
      suppressMessages(
        BiocParallel::bplapply(
          seq_len(nrow(ms1.info)),
          FUN = identify_peak,
          BPPARAM = bpparam,
          ms1.info = ms1.info,
          ms2.info = ms2.info,
          spectra.info = spectra.info,
          spectra.data = spectra.data,
          ppm.ms1match = ms1.match.ppm,
          ppm.ms2match = ms2.match.ppm,
          mz.ppm.thr = mz.ppm.thr,
          ms2.match.tol = ms2.match.tol,
          rt.match.tol = rt.match.tol,
          ms1.match.weight = ms1.match.weight,
          rt.match.weight = rt.match.weight,
          ms2.match.weight = ms2.match.weight,
          total.score.tol = total.score.tol,
          adduct.table = adduct.table,
          candidate.num = candidate.num,
          fraction.weight = fraction.weight,
          dp.forward.weight = dp.forward.weight,
          dp.reverse.weight = dp.reverse.weight,
          remove_fragment_intensity_cutoff = remove_fragment_intensity_cutoff
        )
      )
    
    names(identification_result) <- ms1.info$name
    identification_result <-
      identification_result[which(!unlist(lapply(identification_result, function(x)
        all(is.na(x)))))]
    if (length(identification_result) == 0) {
      return(list(NULL))
    }
    return(identification_result)
  }


#---------------------------------------------------------------------------

#' Identify a Peak in a Mass Spectrometry Dataset
#'
#' This function identifies a potential metabolite peak in a mass spectrometry dataset by matching MS1 and MS2 data to a reference spectral database.
#'
#' @param idx The index of the peak to identify.
#' @param ms1.info A data frame containing MS1 information such as m/z and retention time (RT).
#' @param ms2.info A list containing MS2 spectra data for each peak.
#' @param spectra.info A data frame containing metadata about the reference spectra in the database.
#' @param spectra.data A list containing the MS2 spectra data from the reference database.
#' @param ppm.ms1match Numeric, mass accuracy threshold for MS1 matching in parts per million (ppm). Defaults to `25`.
#' @param ppm.ms2match Numeric, mass accuracy threshold for MS2 matching in ppm. Defaults to `30`.
#' @param mz.ppm.thr Numeric, m/z threshold in ppm for matching MS1 and MS2. Defaults to `400`.
#' @param ms2.match.tol Numeric, tolerance for MS2 fragment ion matching. Defaults to `0.5`.
#' @param rt.match.tol Numeric, retention time matching tolerance in seconds. Defaults to `30`.
#' @param ms1.match.weight Numeric, weight of MS1 matching in total score calculation. Defaults to `0.25`.
#' @param rt.match.weight Numeric, weight of RT matching in total score calculation. Defaults to `0.25`.
#' @param ms2.match.weight Numeric, weight of MS2 matching in total score calculation. Defaults to `0.5`.
#' @param total.score.tol Numeric, threshold for the total score. Defaults to `0.5`.
#' @param adduct.table A data frame containing the list of adducts to be considered for matching.
#' @param candidate.num Numeric, the number of top candidates to retain for each peak. Defaults to `3`.
#' @param fraction.weight Numeric, weight for the MS2 fragmentation score. Defaults to `0.3`.
#' @param dp.forward.weight Numeric, weight for the forward dot product in MS2 matching. Defaults to `0.6`.
#' @param dp.reverse.weight Numeric, weight for the reverse dot product in MS2 matching. Defaults to `0.1`.
#' @param remove_fragment_intensity_cutoff Numeric, intensity cutoff for removing low-intensity MS2 fragments. Defaults to `0`.
#' @param ... Additional arguments passed to other methods.
#'
#' @return A data frame containing the identified peak and its matching results, including total score, m/z error, RT error, and matching scores.
#'
#' @details
#' This function matches experimental MS1 and MS2 data with reference spectra in a spectral database. It calculates matching scores based on m/z, RT, and MS2 fragmentation pattern similarities. The function supports matching multiple adducts and considers weights for MS1, MS2, and RT matching in the total score calculation.
#'
#' @examples
#' \dontrun{
#' identified_peak <- identify_peak(
#'   idx = 1,
#'   ms1.info = ms1_data,
#'   ms2.info = ms2_spectra,
#'   spectra.info = reference_spectra_info,
#'   spectra.data = reference_spectra_data
#' )
#' }
#'
#' @author Xiaotao Shen
#' \email{xiaotao.shen@@outlook.com}
#' @export


identify_peak <-
  function(idx,
           ms1.info,
           ms2.info,
           spectra.info,
           spectra.data,
           ppm.ms1match = 25,
           ppm.ms2match = 30,
           mz.ppm.thr = 400,
           ms2.match.tol = 0.5,
           rt.match.tol = 30,
           ms1.match.weight = 0.25,
           rt.match.weight = 0.25,
           ms2.match.weight = 0.5,
           total.score.tol = 0.5,
           adduct.table,
           candidate.num = 3,
           fraction.weight = 0.3,
           dp.forward.weight = 0.6,
           dp.reverse.weight = 0.1,
           remove_fragment_intensity_cutoff = 0,
           ...) {
    pk.precursor <- ms1.info[idx, , drop = FALSE]
    rm(list = c("ms1.info"))
    pk.mz <- pk.precursor$mz
    pk.rt <- pk.precursor$rt
    pk.spec <- ms2.info[[idx]]
    rm(list = c("ms2.info"))
    
    if (length(pk.spec) == 0) {
      return(NA)
    }
    
    spectra.mz <-
      apply(adduct.table, 1, function(x) {
        temp.n <-
          stringr::str_extract(string = as.character(x[1]), pattern = "[0-9]{1}M")
        temp.n <-
          as.numeric(stringr::str_replace(
            string = temp.n,
            pattern = "M",
            replacement = ""
          ))
        temp.n[is.na(temp.n)] <- 1
        as.numeric(x[2]) + temp.n * as.numeric(spectra.info$mz)
      })
    
    colnames(spectra.mz) <- adduct.table[, 1]
    rownames(spectra.mz) <- spectra.info$Lab.ID
    
    ###mz match
    # match.idx <-
    #   apply(spectra.mz, 1, function(x) {
    #     temp.mz.error <-
    #       abs(x - pk.mz) * 10 ^ 6 / ifelse(pk.mz < 400, 400, pk.mz)
    #     temp.mz.match.score <-
    #       exp(-0.5 * (temp.mz.error / (ppm.ms1match)) ^ 2)
    #     data.frame(
    #       "addcut" = names(temp.mz.error)[which(temp.mz.error < ppm.ms1match)],
    #       "mz.error" = temp.mz.error[which(temp.mz.error < ppm.ms1match)],
    #       "mz.match.score" = temp.mz.match.score[which(temp.mz.error < ppm.ms1match)],
    #       stringsAsFactors = FALSE
    #     )
    #   })
    
    temp.mz.error <-
      abs(spectra.mz - pk.mz) * 10 ^ 6 / ifelse(pk.mz < 400, 400, pk.mz)
    
    temp.mz.error[which(is.na(temp.mz.error), arr.ind = TRUE)] <-
      ppm.ms1match + 1
    
    temp.mz.match.score <-
      exp(-0.5 * (temp.mz.error / (ppm.ms1match)) ^ 2)
    
    if (sum(temp.mz.error < ppm.ms1match) == 0) {
      return(NA)
    }
    
    match.idx <-
      which(temp.mz.error < ppm.ms1match, arr.ind = TRUE) %>%
      as.data.frame()
    
    match.idx <-
      seq_len(nrow(match.idx)) %>%
      purrr::map(function(i) {
        data.frame(
          Lab.ID = rownames(spectra.mz)[match.idx$row[i]],
          Adduct = colnames(spectra.mz)[match.idx$col[i]],
          mz.error = as.numeric(temp.mz.error[match.idx$row[i], match.idx$col[i]]),
          mz.match.score = as.numeric(temp.mz.match.score[match.idx$row[i], match.idx$col[i]])
        )
      }) %>%
      dplyr::bind_rows()
    
    rownames(match.idx) <- NULL
    
    rm(list = c("spectra.mz", "adduct.table"))
    
    ###RT match
    if (rt.match.tol > 10000) {
      temp.rt.error <-
        temp.rt.match.score <-
        rep(NA, nrow(match.idx))
    } else{
      temp.rt.error <-
        abs(pk.rt - spectra.info$RT[match(match.idx$Lab.ID, spectra.info$Lab.ID)])
      
      temp.rt.match.score <-
        exp(-0.5 * (temp.rt.error / (rt.match.tol)) ^ 2)
    }
    
    RT.error <-
      data.frame(RT.error = temp.rt.error, RT.match.score = temp.rt.match.score)
    
    match.idx <-
      data.frame(match.idx, RT.error, stringsAsFactors = FALSE)
    
    rm(list = c("RT.error"))
    
    if (any(!is.na(match.idx$RT.error))) {
      RT.error <- match.idx$RT.error
      RT.error[is.na(RT.error)] <- rt.match.tol - 1
      match.idx <-
        match.idx[RT.error < rt.match.tol, , drop = FALSE]
    }
    
    if (nrow(match.idx) == 0) {
      return(NA)
    }
    
    ###MS2 spectra match
    ms2.score <-
      seq_len(nrow(match.idx)) %>%
      purrr::map(function(i) {
        lib.spec <- spectra.data[[match.idx$Lab.ID[i]]]
        dp <- lapply(lib.spec, function(y) {
          y <- as.data.frame(y)
          y$mz <- as.numeric(y$mz)
          y$intensity <- as.numeric(y$intensity)
          masstools::get_spectra_match_score(
            exp.spectrum = as.data.frame(pk.spec),
            lib.spectrum = y,
            ppm.tol = ppm.ms2match,
            mz.ppm.thr = mz.ppm.thr,
            fraction.weight = fraction.weight,
            dp.forward.weight = dp.forward.weight,
            dp.reverse.weight = dp.reverse.weight,
            remove_fragment_intensity_cutoff = remove_fragment_intensity_cutoff
          )
        })
        dp <- dp[which.max(unlist(dp))]
        dp <- unlist(dp)
        data.frame("CE" = names(dp),
                   "SS" = dp,
                   stringsAsFactors = FALSE)
      }) %>%
      dplyr::bind_rows()
    
    rownames(ms2.score) <- NULL
    
    match.idx <-
      data.frame(match.idx, ms2.score, stringsAsFactors = FALSE)
    match.idx <-
      match.idx[which(match.idx$SS > ms2.match.tol), , drop = FALSE]
    rm(list = c("ms2.score"))
    if (nrow(match.idx) == 0) {
      return(NA)
    }
    
    ###total score
    total.score <-
      seq_len(nrow(match.idx)) %>%
      purrr::map(function(i) {
        if (is.na(match.idx$RT.error[i])) {
          as.numeric(match.idx$mz.match.score[i]) * (ms1.match.weight + rt.match.weight /
                                                       2) +
            as.numeric(match.idx$SS[i]) * (ms2.match.weight + rt.match.weight /
                                             2)
        } else{
          as.numeric(match.idx$mz.match.score[i]) * ms1.match.weight +
            as.numeric(match.idx$RT.match.score[i]) * rt.match.weight +
            as.numeric(match.idx$SS[i]) * ms2.match.weight
        }
      }) %>%
      unlist() %>%
      as.numeric()
    
    match.idx <- data.frame(match.idx,
                            "Total.score" = total.score,
                            stringsAsFactors = FALSE)
    rm(list = c("total.score"))
    match.idx <-
      match.idx[match.idx$Total.score > total.score.tol, , drop = FALSE]
    
    if (nrow(match.idx) == 0) {
      return(NA)
    }
    
    match.idx <-
      match.idx %>%
      dplyr::arrange(dplyr::desc(Total.score))
    
    if (nrow(match.idx) > candidate.num) {
      match.idx <- match.idx[seq_len(candidate.num), ]
    }
    ##add other information
    match.idx <-
      data.frame(spectra.info[match(match.idx$Lab.ID, spectra.info$Lab.ID), c("Compound.name", "CAS.ID", "HMDB.ID", "KEGG.ID")], match.idx, stringsAsFactors = FALSE)
    
    return(match.idx)
  }



# plotMS2match(matched.info = temp.matched.info, exp.spectrum = exp.spectrum,
#              lib.spectrum = lib.spectrum, database = database)
#
# matched.info <- temp.matched.info
# range.mz = range.mz
# exp.spectrum = exp.spectrum
# lib.spectrum = lib.spectrum
# col.lib = col.lib
# col.exp = col.exp
# ce = ce
# polarity = polarity
# database = database
plotMS2match <-
  function(matched.info,
           range.mz,
           ppm.tol = 30,
           mz.ppm.thr = 400,
           exp.spectrum,
           lib.spectrum,
           polarity = c("positive", "negative"),
           xlab = "Mass to charge ratio (m/z)",
           ylab = "Relative intensity",
           col.lib = "red",
           col.exp = "black",
           ce = "30",
           title.size = 15,
           lab.size = 15,
           axis.text.size = 15,
           legend.title.size = 15,
           legend.text.size = 15,
           database) {
    polarity <- match.arg(polarity)
    exp.spectrum[, 1] <- as.numeric(exp.spectrum[, 1])
    exp.spectrum[, 2] <- as.numeric(exp.spectrum[, 2])
    
    lib.spectrum[, 1] <- as.numeric(lib.spectrum[, 1])
    lib.spectrum[, 2] <- as.numeric(lib.spectrum[, 2])
    
    exp.spectrum[, 2] <-
      exp.spectrum[, 2] / max(exp.spectrum[, 2])
    lib.spectrum[, 2] <-
      lib.spectrum[, 2] / max(lib.spectrum[, 2])
    
    exp.spectrum <- as.data.frame(exp.spectrum)
    lib.spectrum <- as.data.frame(lib.spectrum)
    if (missing(range.mz)) {
      range.mz <- c(min(exp.spectrum[, 1], lib.spectrum[, 1]),
                    max(exp.spectrum[, 1], lib.spectrum[, 1]))
      
    }
    
    matched.spec <-
      masstools::ms2_match(
        exp.spectrum = exp.spectrum,
        lib.spectrum = lib.spectrum,
        ppm.tol = ppm.tol,
        mz.ppm.thr = mz.ppm.thr
      )
    matched.idx <-
      which(matched.spec[, "Lib.intensity"] > 0 &
              matched.spec[, "Exp.intensity"] > 0)
    
    plot <- ggplot2::ggplot(data = matched.spec) +
      ggplot2::geom_segment(
        mapping = ggplot2::aes(
          x = Exp.mz,
          y = Exp.intensity - Exp.intensity,
          xend = Exp.mz,
          yend = Exp.intensity
        ),
        colour = col.exp
      ) +
      ggplot2::geom_point(
        data = matched.spec[matched.idx, , drop = FALSE],
        mapping = ggplot2::aes(x = Exp.mz, y = Exp.intensity),
        colour = col.exp
      ) +
      ggplot2::xlim(range.mz[1], range.mz[2]) +
      ggplot2::ylim(-1, 1) +
      ggplot2::labs(x = xlab,
                    y = ylab,
                    title = as.character(matched.info["Compound.name"])) +
      ggplot2::theme_bw() +
      ggplot2::theme(
        # axis.line = ggplot2::element_line(arrow = ggplot2::arrow()),
        plot.title = ggplot2::element_text(
          color = "black",
          size = title.size,
          face = "plain",
          hjust = 0.5
        ),
        axis.title = ggplot2::element_text(
          color = "black",
          size = lab.size,
          face = "plain"
        ),
        axis.text = ggplot2::element_text(
          color = "black",
          size = axis.text.size,
          face = "plain"
        ),
        legend.title = ggplot2::element_text(
          color = "black",
          size = legend.title.size,
          face = "plain"
        ),
        legend.text = ggplot2::element_text(
          color = "black",
          size = legend.text.size,
          face = "plain"
        )
      )
    
    temp.info <-
      unlist(database@spectra.info[match(matched.info["Lab.ID"], database@spectra.info$Lab.ID), , drop = TRUE])
    temp.info <- temp.info[!is.na(temp.info)]
    temp.info <-
      temp.info[unlist(lapply(temp.info, stringr::str_count)) < 50]
    temp.info <-
      paste(names(temp.info), temp.info, sep = ": ")
    
    plot <- plot +
      ggplot2::annotate(
        geom = "text",
        x = -Inf,
        y = Inf,
        label = paste(temp.info, collapse = "\n"),
        hjust = 0,
        vjust = 1
      )
    
    temp.info2 <-
      matched.info[c("mz.error", "RT.error", "SS", "Total.score", "Adduct", "CE")]
    temp.info2 <- temp.info2[!is.na(temp.info2)]
    
    temp.info2 <-
      paste(names(temp.info2), temp.info2, sep = ": ")
    plot <- plot +
      ggplot2::annotate(
        geom = "text",
        x = -Inf,
        y = -Inf,
        label = paste(temp.info2, collapse = "\n"),
        hjust = 0,
        vjust = 0
      )
    
    plot <- plot +
      ggplot2::annotate(
        geom = "text",
        x = Inf,
        y = Inf,
        label = "Experiment MS2 spectrum",
        color = col.exp,
        hjust = 1,
        vjust = 1
      ) +
      ggplot2::annotate(
        geom = "text",
        x = Inf,
        y = -Inf,
        label = "Database MS2 spectrum",
        color = col.lib,
        hjust = 1,
        vjust = -1
      )
    
    plot <- plot +
      ggplot2::geom_segment(
        data = matched.spec,
        mapping = ggplot2::aes(
          x = Lib.mz,
          y = Lib.intensity - Lib.intensity,
          xend = Lib.mz,
          yend = -Lib.intensity
        ),
        colour = col.lib
      ) +
      ggplot2::geom_point(
        data = matched.spec[matched.idx, , drop = FALSE],
        mapping = ggplot2::aes(x = Lib.mz, y = -Lib.intensity),
        colour = col.lib
      )
    plot
  }
tidymass/metid documentation built on Oct. 8, 2024, 10:32 p.m.