Build_CC_list <- function(matAdj){
require(Matrix)
ll1 <- get.pep.prot.cc(ExtractAdjMat(X = matAdj, WithSharedPeptides = TRUE))
ll1 <- get.pep.prot.cc(ExtractAdjMat(X = matAdj, WithSharedPeptides = FALSE))
return(
list(allPep = ll1,
onlyUniquePep = ll2)
)
}
#' @title Build the list of connex composant of the adjacency matrix
#'
#' @param X An adjacency matrix
#'
#' @return A list of CC
#'
#' @author Thomas Burger, Samuel Wieczorek
#'
#' @examples
#' data(Exp1_R25_pept, package="DaparToolshedData")
#' obj <- Exp1_R25_pept[seq_len(10)]
#' X <- BuildAdjacencyMatrix(obj, "Protein_group_IDs", FALSE)
#' ll <- get.pep.prot.cc(X)
#'
#' @export
#'
get.pep.prot.cc <- function(X) {
pkgs.require(c('Matrix', 'igraph', 'graph'))
if (is.null(X)) {
warning("The adjacency matrix is empty")
return()
}
# X <- as.matrix(X)
p <- dim(X)[2] # Nb proteins
q <- dim(X)[1] # Nb peptides
multprot.cc <- singprot.cc <- multprot.cc.pep <- singprot.cc.pep <- NULL
A <- B <- g <- NULL
### Adjacency matrix construction
# boolean matrix product
#print("Start computing boolean matrix product")
A <- Matrix::crossprod(X, boolArith = TRUE)
# A <- as.matrix(t(X) %*% X)
# A <- as.matrix(t(X) %&% X)
#print("End of computing boolean matrix product")
# remove self-connecting edges
diag(A) <- rep(0, p)
# goes back to classical matrix format
A <- matrix(as.numeric(A[, ]), ncol = p)
# reset pep and prot names
colnames(A) <- rownames(A) <- colnames(X)
# proteins with no shared peptides
# ie CC with only one protein
SingleProt.CC.id <- which(rowSums(A) == 0)
if (length(SingleProt.CC.id) > 0) {
### Peptides from single prot CCs
singprot.cc <- as.list(names(SingleProt.CC.id))
singprot.cc.pep <- list()
for (i in seq_len(length(singprot.cc))) {
peplist <- which(X[, singprot.cc[[i]]] != 0)
singprot.cc.pep[[i]] <- names(peplist)
}
}
# Test if there exist other CC than the single-prot ones
otherCC.exists <- length(SingleProt.CC.id) < nrow(A)
if (otherCC.exists) {
# Remove all single-prot CC
B <- A[-SingleProt.CC.id, -SingleProt.CC.id]
### Protein CCs
# multprot.cc <- NULL
# g <- graph::graphAM(B, edgemode='undirected', values=NA)
# multprot.cc <- graph::connComp(as(g, 'graphNEL'))
#
# ### Peptides from multiple prot CCs
# multprot.cc.pep <- list()
# for(i in seq_len(length(multprot.cc))){
# protlist <- multprot.cc[[i]]
# subX <- as.matrix(X[,protlist])
# peplist <- which(rowSums(subX)!=0)
# multprot.cc.pep[[i]] <- names(peplist)
# }
multprot.cc <- NULL
g2 <- igraph::graph.adjacency(B, mode = "undirected")
cc.igraph <- igraph::components(g2)
cc.id <- unique(cc.igraph$membership)
multprot.cc <- lapply(
cc.id,
function(x) names(which(cc.igraph$membership == x))
)
multprot.cc.pep <- list()
for (i in seq_len(length(multprot.cc))) {
protlist <- multprot.cc[[i]]
subX <- as.matrix(X[, protlist])
peplist <- which(rowSums(subX) != 0)
multprot.cc.pep[[i]] <- names(peplist)
}
}
### Merge results into a single list
prot.cc <- c(multprot.cc, singprot.cc)
pep.cc <- c(multprot.cc.pep, singprot.cc.pep)
global.cc <- list()
for (i in seq_len(length(prot.cc))) {
prot <- prot.cc[[i]]
pep <- pep.cc[[i]]
tmp <- list(prot, pep)
names(tmp) <- c("proteins", "peptides")
global.cc[[i]] <- tmp
}
### Clean memory and return result
rm(
A,
B,
g,
multprot.cc,
singprot.cc,
multprot.cc.pep,
singprot.cc.pep,
prot.cc, pep.cc
)
gc()
return(global.cc)
}
#' @title Jitter plot of CC
#'
#' @param list.of.cc List of cc such as returned by the function get.pep.prot.cc
#'
#' @return A plot
#'
#' @author Thomas Burger
#'
#' @examples
#' data(Exp1_R25_pept, package="DaparToolshedData")
#' obj <- Exp1_R25_pept[seq_len(100)]
#' X <- BuildAdjacencyMatrix(obj, "Protein_group_IDs", TRUE)
#' ll <- get.pep.prot.cc(X)
#' plotJitter(ll)
#'
#' @export
#'
plotJitter <- function(list.of.cc = NULL) {
if (is.null(list.of.cc)) {
return()
}
#x <- length(list.of.cc) # number of CCs
cc.summary <- sapply(list.of.cc, function(x) {
c(length(x[[1]]), length(x[[2]]))
})
# cc.summary <- vapply(list.of.cc,
# function(x) {c(length(x[[1]]), length(x[[2]]))},
# data.frame(2)
# )
rownames(cc.summary) <- c("Nb_proteins", "Nb_peptides")
colSums(cc.summary) # total amount of pep and prot in each CC
colnames(cc.summary) <- seq_len(length(list.of.cc))
cc.summary
rowSums(cc.summary) # c(number of prot, number of pep)
cc.summary <- as.data.frame(t(jitter(cc.summary)))
plot(
jitter(cc.summary[, 2]),
jitter(cc.summary[, 1]),
type = "p",
xlab = "#peptides in CC",
ylab = "#proteins in CC"
)
}
#' @title Display a CC
#'
#' @param The.CC A cc (a list)
#'
#' @param X xxxxx
#'
#' @return A plot
#'
#' @author Thomas Burger, Samuel Wieczorek
#'
#' @examples
#' data(Exp1_R25_pept, package="DaparToolshedData")
#' obj <- Exp1_R25_pept[seq_len(100)]
#' X <- BuildAdjacencyMatrix(obj, "Protein_group_IDs", FALSE)
#' ll <- get.pep.prot.cc(X)
#' g <- buildGraph(ll[[1]], X)
#'
#' @export
#'
buildGraph <- function(The.CC, X) {
nb.prot <- length(The.CC$proteins)
nb.pep <- length(The.CC$peptides)
subX <- Matrix::Matrix(
X[The.CC$peptides, The.CC$proteins],
nrow = nb.pep,
ncol = nb.prot,
dimnames = list(The.CC$peptides, The.CC$proteins)
)
colnames(subX) <- The.CC$proteins
subX <- as.matrix(subX)
nb.pep.shared <- length(which(rowSums(subX) > 1))
nb.pep.spec <- length(which(rowSums(subX) == 1))
nb.total <- nb.prot + nb.pep
edge.list <- as.data.frame(which(subX == 1, arr.ind = TRUE))
def.grp <- c(rep("shared.peptide", nb.pep), rep("protein", nb.prot))
def.grp[which(rowSums(subX) == 1)] <- "spec.peptide"
nodes <- data.frame(
id = seq_len(nb.total),
group = def.grp,
label = c(rownames(subX), colnames(subX)),
title = paste0("<p>", seq_len(nb.total), "<br>Tooltip !</p>"),
size = c(rep(10, nb.pep), rep(20, nb.prot)),
stringsAsFactors = FALSE
)
edges <- data.frame(
from = c(edge.list$row),
to = c(edge.list$col + nb.pep),
stringsAsFactors = FALSE
)
return(
list(
nodes = nodes,
edges = edges
)
)
}
#' @title Display a CC
#'
#' @param g A cc (a list)
#'
#' @param layout xxxxx
#'
#' @param obj xxx
#'
#' @param prot.tooltip xxx
#'
#' @param pept.tooltip xxx
#'
#' @return A plot
#'
#' @author Thomas Burger, Samuel Wieczorek
#'
#' @examples
#' data(Exp1_R25_pept, package="DaparToolshedData")
#' obj <- Exp1_R25_pept[seq_len(100)]
#' X <- BuildAdjacencyMatrix(obj, "Protein_group_IDs", FALSE)
#' ll <- get.pep.prot.cc(X)
#' g <- buildGraph(ll[[1]], X)
#' display.CC.visNet(g)
#'
#' @export
#'
#'
#'
display.CC.visNet <- function(
g,
layout = layout_nicely,
obj = NULL,
prot.tooltip = NULL,
pept.tooltip = NULL) {
pkgs.require('visNetwork')
col.prot <- "#ECB57C"
col.spec <- "#5CA3F7"
col.shared <- "#0EA513"
visNetwork::visNetwork(g$nodes, g$edges, width = "100%",
height = "100%") %>%
visNetwork::visNodes(shape = "dot") %>% # square for all nodes
visNetwork::visGroups(groupname = "spec.peptide",
color = col.spec) %>% # darkblue for group "A"
visNetwork::visGroups(groupname = "shared.peptide",
color = col.shared) %>% # darkblue for group "A"
visNetwork::visGroups(groupname = "protein",
color = col.prot, shape = "dot") %>%
visNetwork::visOptions(highlightNearest = FALSE) %>%
# visLegend()
# visPhysics(stabilization = FALSE)%>%
visNetwork::visEdges(color = "#A9A9A9", width = 2)
# %>%
# visIgraphLayout(layout = "layout_with_fr")
}
#' @title Display a a jitter plot for CC
#'
#' @param df xxxx
#'
#' @param clickFunction xxxx
#'
#' @return A plot
#'
#' @author Thomas Burger, Samuel Wieczorek
#'
#' @export
#'
#' @examples
#' data(Exp1_R25_pept, package="DaparToolshedData")
#' obj <- Exp1_R25_pept[seq_len(100)]
#' X <- BuildAdjacencyMatrix(obj, "Protein_group_IDs", TRUE)
#' ll <- get.pep.prot.cc(X)[1:4]
#' n.prot <- unlist(lapply(ll, function(x) {length(x$proteins)}))
#' n.pept <- unlist(lapply(ll, function(x) {length(x$peptides)}))
#' df <- tibble::tibble(
#' x = jitter(n.pept),
#' y = jitter(n.prot),
#' index = seq_len(length(ll))
#' )
#' plotJitter_rCharts(df)
#'
plotJitter_rCharts <- function(df, clickFunction = NULL) {
xtitle <- "TO DO"
if (is.null(clickFunction)) {
clickFunction <-
JS("function(event)
{
Shiny.onInputChange('eventPointClicked',
[this.index]+'_'+ [this.series.name]);
}")
}
i_tooltip <- which(startsWith(colnames(df), "tooltip"))
txt_tooltip <- NULL
if (length(i_tooltip) == 0){
warning("There is no tooltip in the object.")
}
for (i in i_tooltip) {
txt_tooltip <- paste(txt_tooltip, "<b>", gsub("tooltip_", "",
colnames(df)[i],
fixed = TRUE
),
" </b>: {point.", colnames(df)[i], "} <br> ",
sep = ""
)
}
h1 <- highchart() %>%
hc_add_series(data = df, type = "scatter") %>%
my_hc_chart(zoomType = "xy", chartType = "scatter") %>%
hc_legend(enabled = FALSE) %>%
hc_yAxis(title = list(text = "Nb of proteins ic CC")) %>%
hc_xAxis(title = list(text = "Nb of peptides ic CC")) %>%
hc_tooltip(headerFormat = "", pointFormat = txt_tooltip) %>%
hc_plotOptions(series = list(
animation = list(duration = 100),
cursor = "pointer",
point = list(events = list(
click = clickFunction
))
)) %>%
my_hc_ExportMenu(filename = "plotCC")
return(h1)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.