R/get_pep_prot_cc.R

Defines functions plotJitter_rCharts display.CC.visNet buildGraph plotJitter get.pep.prot.cc Build_CC_list

Documented in buildGraph display.CC.visNet get.pep.prot.cc plotJitter plotJitter_rCharts

Build_CC_list <- function(matAdj){
  require(Matrix)
  
  ll1 <- get.pep.prot.cc(ExtractAdjMat(X = matAdj, WithSharedPeptides = TRUE))
  ll1 <- get.pep.prot.cc(ExtractAdjMat(X = matAdj, WithSharedPeptides = FALSE))
  
  return(
    list(allPep = ll1,
         onlyUniquePep = ll2)
  )
}





#' @title Build the list of connex composant of the adjacency matrix
#'
#' @param X An adjacency matrix
#'
#' @return A list of CC
#'
#' @author Thomas Burger, Samuel Wieczorek
#'
#' @examples
#' data(Exp1_R25_pept, package="DaparToolshedData")
#' obj <- Exp1_R25_pept[seq_len(10)]
#' X <- BuildAdjacencyMatrix(obj, "Protein_group_IDs", FALSE)
#' ll <- get.pep.prot.cc(X)
#'
#' @export
#'
get.pep.prot.cc <- function(X) {
  pkgs.require(c('Matrix', 'igraph', 'graph'))
  
  if (is.null(X)) {
    warning("The adjacency matrix is empty")
    return()
  }
  
  # X <- as.matrix(X)
  p <- dim(X)[2] # Nb proteins
  q <- dim(X)[1] # Nb peptides
  
  
  multprot.cc <- singprot.cc <- multprot.cc.pep <- singprot.cc.pep <- NULL
  A <- B <- g <- NULL
  ### Adjacency matrix construction
  # boolean matrix product
  #print("Start computing boolean matrix product")
  A <- Matrix::crossprod(X, boolArith = TRUE)
  # A <- as.matrix(t(X) %*% X)
  # A <- as.matrix(t(X) %&% X)
  #print("End of computing boolean matrix product")
  # remove self-connecting edges
  diag(A) <- rep(0, p)
  # goes back to classical matrix format
  A <- matrix(as.numeric(A[, ]), ncol = p) 
  # reset pep and prot names
  colnames(A) <- rownames(A) <- colnames(X) 
  
  # proteins with no shared peptides
  # ie CC with only one protein
  SingleProt.CC.id <- which(rowSums(A) == 0)
  
  if (length(SingleProt.CC.id) > 0) {
    ### Peptides from single prot CCs
    singprot.cc <- as.list(names(SingleProt.CC.id))
    singprot.cc.pep <- list()
    for (i in seq_len(length(singprot.cc))) {
      peplist <- which(X[, singprot.cc[[i]]] != 0)
      singprot.cc.pep[[i]] <- names(peplist)
    }
  }
  
  
  # Test if there exist other CC than the single-prot ones
  otherCC.exists <- length(SingleProt.CC.id) < nrow(A)
  if (otherCC.exists) {
    # Remove all single-prot CC
    B <- A[-SingleProt.CC.id, -SingleProt.CC.id]
    
    ### Protein CCs
    # multprot.cc <- NULL
    # g <- graph::graphAM(B, edgemode='undirected', values=NA)
    # multprot.cc <- graph::connComp(as(g, 'graphNEL'))
    #
    # ### Peptides from multiple prot CCs
    # multprot.cc.pep <- list()
    # for(i in seq_len(length(multprot.cc))){
    #   protlist <- multprot.cc[[i]]
    #   subX <- as.matrix(X[,protlist])
    #   peplist <- which(rowSums(subX)!=0)
    #   multprot.cc.pep[[i]] <- names(peplist)
    # }
    
    multprot.cc <- NULL
    g2 <- igraph::graph.adjacency(B, mode = "undirected")
    cc.igraph <- igraph::components(g2)
    cc.id <- unique(cc.igraph$membership)
    multprot.cc <- lapply(
      cc.id,
      function(x) names(which(cc.igraph$membership == x))
    )
    
    multprot.cc.pep <- list()
    
    for (i in seq_len(length(multprot.cc))) {
      protlist <- multprot.cc[[i]]
      subX <- as.matrix(X[, protlist])
      peplist <- which(rowSums(subX) != 0)
      multprot.cc.pep[[i]] <- names(peplist)
    }
  }
  
  
  ### Merge results into a single list
  prot.cc <- c(multprot.cc, singprot.cc)
  pep.cc <- c(multprot.cc.pep, singprot.cc.pep)
  global.cc <- list()
  for (i in seq_len(length(prot.cc))) {
    prot <- prot.cc[[i]]
    pep <- pep.cc[[i]]
    tmp <- list(prot, pep)
    names(tmp) <- c("proteins", "peptides")
    global.cc[[i]] <- tmp
  }
  
  ### Clean memory and return result
  rm(
    A,
    B,
    g,
    multprot.cc,
    singprot.cc,
    multprot.cc.pep,
    singprot.cc.pep,
    prot.cc, pep.cc
  )
  gc()
  return(global.cc)
}





#' @title Jitter plot of CC
#'
#' @param list.of.cc List of cc such as returned by the function get.pep.prot.cc
#'
#' @return A plot
#'
#' @author Thomas Burger
#'
#' @examples
#' data(Exp1_R25_pept, package="DaparToolshedData")
#' obj <- Exp1_R25_pept[seq_len(100)]
#' X <- BuildAdjacencyMatrix(obj, "Protein_group_IDs", TRUE)
#' ll <- get.pep.prot.cc(X)
#' plotJitter(ll)
#'
#' @export
#'
plotJitter <- function(list.of.cc = NULL) {
  if (is.null(list.of.cc)) {
    return()
  }
  
  #x <- length(list.of.cc) # number of CCs
  cc.summary <- sapply(list.of.cc, function(x) {
    c(length(x[[1]]), length(x[[2]]))
  })
  # cc.summary <- vapply(list.of.cc, 
  #     function(x) {c(length(x[[1]]), length(x[[2]]))},
  #     data.frame(2)
  #     )
  
  rownames(cc.summary) <- c("Nb_proteins", "Nb_peptides")
  colSums(cc.summary) # total amount of pep and prot in each CC
  colnames(cc.summary) <- seq_len(length(list.of.cc))
  cc.summary
  rowSums(cc.summary) # c(number of prot, number of pep)
  
  
  cc.summary <- as.data.frame(t(jitter(cc.summary)))
  plot(
    jitter(cc.summary[, 2]), 
    jitter(cc.summary[, 1]), 
    type = "p", 
    xlab = "#peptides in CC", 
    ylab = "#proteins in CC"
  )
}



#' @title Display a CC
#'
#' @param The.CC A cc (a list)
#'
#' @param X xxxxx
#'
#' @return A plot
#'
#' @author Thomas Burger, Samuel Wieczorek
#'
#' @examples
#' data(Exp1_R25_pept, package="DaparToolshedData")
#' obj <- Exp1_R25_pept[seq_len(100)]
#' X <- BuildAdjacencyMatrix(obj, "Protein_group_IDs", FALSE)
#' ll <- get.pep.prot.cc(X)
#' g <- buildGraph(ll[[1]], X)
#'
#' @export
#'
buildGraph <- function(The.CC, X) {
  nb.prot <- length(The.CC$proteins)
  nb.pep <- length(The.CC$peptides)
  subX <- Matrix::Matrix(
    X[The.CC$peptides, The.CC$proteins],
    nrow = nb.pep,
    ncol = nb.prot,
    dimnames = list(The.CC$peptides, The.CC$proteins)
  )
  colnames(subX) <- The.CC$proteins
  subX <- as.matrix(subX)
  nb.pep.shared <- length(which(rowSums(subX) > 1))
  nb.pep.spec <- length(which(rowSums(subX) == 1))
  nb.total <- nb.prot + nb.pep
  edge.list <- as.data.frame(which(subX == 1, arr.ind = TRUE))
  
  def.grp <- c(rep("shared.peptide", nb.pep), rep("protein", nb.prot))
  def.grp[which(rowSums(subX) == 1)] <- "spec.peptide"
  
  
  nodes <- data.frame(
    id = seq_len(nb.total),
    group = def.grp,
    label = c(rownames(subX), colnames(subX)),
    title = paste0("<p>", seq_len(nb.total), "<br>Tooltip !</p>"),
    size = c(rep(10, nb.pep), rep(20, nb.prot)),
    stringsAsFactors = FALSE
  )
  edges <- data.frame(
    from = c(edge.list$row),
    to = c(edge.list$col + nb.pep),
    stringsAsFactors = FALSE
  )
  
  return(
    list(
      nodes = nodes, 
      edges = edges
    )
  )
}


#' @title Display a CC
#'
#' @param g A cc (a list)
#'
#' @param layout xxxxx
#'
#' @param obj xxx
#'
#' @param prot.tooltip xxx
#'
#' @param pept.tooltip xxx
#'
#' @return A plot
#'
#' @author Thomas Burger, Samuel Wieczorek
#'
#' @examples
#' data(Exp1_R25_pept, package="DaparToolshedData")
#' obj <- Exp1_R25_pept[seq_len(100)]
#' X <- BuildAdjacencyMatrix(obj, "Protein_group_IDs", FALSE)
#' ll <- get.pep.prot.cc(X)
#' g <- buildGraph(ll[[1]], X)
#' display.CC.visNet(g)
#'
#' @export
#'
#'
#'
display.CC.visNet <- function(
    g,
    layout = layout_nicely,
    obj = NULL,
    prot.tooltip = NULL,
    pept.tooltip = NULL) {
  
  pkgs.require('visNetwork')
  
  col.prot <- "#ECB57C"
  col.spec <- "#5CA3F7"
  col.shared <- "#0EA513"
  
  
  visNetwork::visNetwork(g$nodes, g$edges, width = "100%", 
                         height = "100%") %>%
    visNetwork::visNodes(shape = "dot") %>% # square for all nodes
    visNetwork::visGroups(groupname = "spec.peptide", 
                          color = col.spec) %>% # darkblue for group "A"
    visNetwork::visGroups(groupname = "shared.peptide", 
                          color = col.shared) %>% # darkblue for group "A"
    visNetwork::visGroups(groupname = "protein", 
                          color = col.prot, shape = "dot") %>%
    visNetwork::visOptions(highlightNearest = FALSE) %>%
    # visLegend()
    # visPhysics(stabilization = FALSE)%>%
    visNetwork::visEdges(color = "#A9A9A9", width = 2)
  # %>%
  # visIgraphLayout(layout = "layout_with_fr")
}



#' @title Display a a jitter plot for CC
#'
#' @param df xxxx
#'
#' @param clickFunction xxxx
#'
#' @return A plot
#'
#' @author Thomas Burger, Samuel Wieczorek
#'
#' @export
#' 
#' @examples 
#' data(Exp1_R25_pept, package="DaparToolshedData")
#' obj <- Exp1_R25_pept[seq_len(100)]
#' X <- BuildAdjacencyMatrix(obj, "Protein_group_IDs", TRUE)
#' ll <- get.pep.prot.cc(X)[1:4]
#' n.prot <- unlist(lapply(ll, function(x) {length(x$proteins)}))
#' n.pept <- unlist(lapply(ll, function(x) {length(x$peptides)}))
#' df <- tibble::tibble(
#' x = jitter(n.pept),
#' y = jitter(n.prot),
#' index = seq_len(length(ll))
#' )
#' plotJitter_rCharts(df)
#'
plotJitter_rCharts <- function(df, clickFunction = NULL) {
  xtitle <- "TO DO"
  
  if (is.null(clickFunction)) {
    clickFunction <-
      JS("function(event) 
                {
                Shiny.onInputChange('eventPointClicked', 
                [this.index]+'_'+ [this.series.name]);
                }")
  }
  
  i_tooltip <- which(startsWith(colnames(df), "tooltip"))
  txt_tooltip <- NULL
  
  if (length(i_tooltip) == 0){
    warning("There is no tooltip in the object.")
  }
  
  for (i in i_tooltip) {
    txt_tooltip <- paste(txt_tooltip, "<b>", gsub("tooltip_", "",
                                                  colnames(df)[i],
                                                  fixed = TRUE
    ),
    " </b>: {point.", colnames(df)[i], "} <br> ",
    sep = ""
    )
  }
  
  h1 <- highchart() %>%
    hc_add_series(data = df, type = "scatter") %>%
    my_hc_chart(zoomType = "xy", chartType = "scatter") %>%
    hc_legend(enabled = FALSE) %>%
    hc_yAxis(title = list(text = "Nb of proteins ic CC")) %>%
    hc_xAxis(title = list(text = "Nb of peptides ic CC")) %>%
    hc_tooltip(headerFormat = "", pointFormat = txt_tooltip) %>%
    hc_plotOptions(series = list(
      animation = list(duration = 100),
      cursor = "pointer",
      point = list(events = list(
        click = clickFunction
      ))
    )) %>%
    my_hc_ExportMenu(filename = "plotCC")
  
  
  return(h1)
}
samWieczorek/Dapar2 documentation built on Oct. 12, 2023, 9:54 a.m.