R/driver.R

Defines functions SPADE.strip.sep SPADE.normalize.out_dir SPADE.flattenAnnotations SPADE.driver cnvrt.coords subplot SPADE.plot.trees SPADE.createPopulationMapping

Documented in SPADE.driver SPADE.flattenAnnotations SPADE.plot.trees

# Helper functions

SPADE.strip.sep <- function(name) {
	ifelse(substr(name,nchar(name),nchar(name))==.Platform$file,substr(name,1,nchar(name)-1),name)
}

SPADE.normalize.out_dir <- function(out_dir) {
	out_dir <- SPADE.strip.sep(out_dir)
	out_dir_info <- file.info(out_dir)
		if (is.na(out_dir_info$isdir)) {
			dir.create(out_dir)
		}
	if (!file.info(out_dir)$isdir) {
		stop(paste("out_dir:",out_dir,"is not a directory"))
	}
	out_dir <- paste(SPADE.strip.sep(out_dir),.Platform$file,sep="")
}

SPADE.flattenAnnotations <- function(annotations) {
	stopifnot(is.list(annotations))
	flat <- NULL
	for (i in seq_along(annotations)) {	
		df <- data.frame(annotations[[i]])
		
		to_paste <- names(annotations)[i] != colnames(df)
		if (any(to_paste))
			colnames(df) <- paste(names(annotations)[i],colnames(df),sep="")
	
		if (is.null(flat))
			flat <- df
		else
			flat <- cbind(flat, df)
	}
	flat
}

SPADE.driver <- function(
	files,
	file_pattern="*.fcs", 
	out_dir=".", 
	cluster_cols=NULL, 
	panels=NULL, 
	comp=TRUE, 
	arcsinh_cofactor=NULL,   # deprecated 
	transforms=flowCore::arcsinhTransform(a=0, b=0.2),
	downsampling_target_number=NULL, 
	downsampling_target_pctile=NULL,
	downsampling_target_percent=0.1,
	downsampling_exclude_pctile=0.01, 
	k=200, 
	clustering_samples=50000, 
	layout=igraph:::layout.kamada.kawai, 
	pctile_color=c(0.02,0.98),
	fcs_channel_mappings_json=NULL
) {

	if (length(files) == 1) {
		if (!file.exists(files)) {
			stop(paste("File not found:", files))
		}
		if (file.info(files)$isdir) {
			files <- dir(SPADE.strip.sep(files),full.names=TRUE,pattern=glob2rx(file_pattern))
		}
	}
	if (length(files) == 0) {
		stop("No input files found")
	} 
	out_dir <- SPADE.normalize.out_dir(out_dir)

	# Validate structure of panels
	if (!is.null(panels))  {
		if (!is.list(panels))
			stop("Invalid panels argument, see function documentation")
		lapply(panels, function(x) {
			if (!is.list(x) || !all(c("panel_files", "median_cols") %in% names(x)))
				stop("Invalid panel found, see function documentation for proper panel structure")
			if (!all(x$panel_files %in% basename(files)))
				stop("Panel files must be a subset of analysis files")
			if (!is.null(x$reference_files) && !all(x$reference_files %in% x$panel_files))
				stop("Panel reference files must be a subset of panel files")
		})
	}

	if (!is.null(arcsinh_cofactor)) {
		warning("arcsinh_cofactor is deprecated, use transform=flowCore::arcsinhTransform(...) instead")
		transforms <- flowCore::arcsinhTransform(a=0, b=1/arcsinh_cofactor)
	}

	# Strip any existing cluster and density columns from files
	for (f in files) {
		SPADE.removeExistingDensityAndClusterColumns(f)
	}

	# Run downsampling/clustering/upsampling on all specified files 
	density_files <- c()
	sampled_files <- c()
	for (f in files) {
		message("Downsampling file: ",f)
		f_density <- paste(out_dir,basename(f),".density.fcs",sep="")
		f_sampled <- paste(out_dir,basename(f),".downsample.fcs",sep="")

		SPADE.addDensityToFCS(f, f_density, cols=cluster_cols, comp=comp, transforms=transforms)
		SPADE.downsampleFCS(f_density,
							f_sampled, 
							exclude_pctile=downsampling_exclude_pctile,
							target_pctile=downsampling_target_pctile,
							target_number=downsampling_target_number,
							target_percent=downsampling_target_percent)

		density_files <- c(density_files, f_density)
		sampled_files <- c(sampled_files, f_sampled)	
	}

	message("Clustering files...")
	cells_file <- paste(out_dir,"clusters.fcs",sep="")
	clust_file <- paste(out_dir,"clusters.table",sep="")
	graph_file <- paste(out_dir,"mst.gml",sep="")
	SPADE.FCSToTree(sampled_files, cells_file, graph_file, clust_file, 
					cols=cluster_cols, 
					transforms=transforms,
					k=k, 
					desired_samples=clustering_samples,
					comp=comp)

	sampled_files <- c()
	for (f in density_files) {
		message("Upsampling file: ",f)
		f_sampled <- paste(f,".cluster.fcs",sep="")
		SPADE.addClusterToFCS(f, f_sampled, cells_file, cols=cluster_cols, transforms=transforms, comp=comp)
		sampled_files <- c(sampled_files, f_sampled)
	}

	graph  <- read.graph(graph_file, format="gml")

	# Compute the layout once for the MST, write out for use by other functions
	layout_table <- layout(graph)
	if (deparse(substitute(layout)) != "SPADE.layout.arch")  # The igraph internal layouts are much more compact than arch.layout
		layout_table = layout_table * 50
	write.table(layout_table,paste(out_dir,file="layout.table",sep=""),row.names = FALSE,col.names = FALSE)
	
	# Track all attributes to compute global limits
	attr_values <- list()

	if (is.null(panels)) {  # Initialize panels if NULL
		panels <- list( list(panel_files=basename(files), median_cols=NULL) )
	}
	
	for (p in panels) {
	
		reference_medians <- NULL
		if (!is.null(p$reference_files)) {
			# Note assuming the ordering of files and sampled_files are identical...
			reference_files   <- sapply(as.vector(p$reference_files), function(f) { sampled_files[match(f,basename(files))[1]] })
			reference_medians <- SPADE.markerMedians(reference_files, vcount(graph), cols=p$fold_cols, transforms=transforms, cluster_cols=cluster_cols, comp=comp)
		}

		for (f in as.vector(p$panel_files)) {
			# Note assuming the ordering of files and sampled_files are identical...
			f <- sampled_files[match(f, basename(files))[1]]

			# Compute the median marker intensities in each node, including the overall cell frequency per node	
			message("Computing medians for file: ",f)
			anno <- SPADE.markerMedians(f, vcount(graph), cols=p$median_cols, transforms=transforms, cluster_cols=cluster_cols, comp=comp)
			if (!is.null(reference_medians)) {	# If a reference file is specified								
				# Compute the fold change compared to reference medians
				message("Computing fold change for file: ", f)
				fold_anno <- SPADE.markerMedians(f, vcount(graph), cols=p$fold_cols, transforms=transforms, cluster_cols=cluster_cols, comp=comp)
				fold <- fold_anno$medians - reference_medians$medians
				raw_fold <- fold_anno$raw_medians / reference_medians$raw_medians
				
				ratio <- log10(fold_anno$percenttotal / reference_medians$percenttotal); 
				colnames(ratio) <- c("percenttotalratiolog")
				is.na(ratio) <- fold_anno$count == 0 | reference_medians$count == 0

				# Merge the fold-change columns with the count, frequency, and median columns
				anno <- c(anno, list(percenttotalratiolog = ratio, fold = fold, raw_fold=raw_fold))	
			}

			SPADE.write.graph(SPADE.annotateGraph(graph, layout=layout_table, anno=anno), paste(f,".medians.gml",sep=""), format="gml")
			# We save an R native version of the annotations to simpify plotting, and other downstream operations
			anno <- SPADE.flattenAnnotations(anno)
			for (c in colnames(anno)) { attr_values[[c]] <- c(attr_values[[c]], anno[,c]) }
			save(anno, file=paste(f,"anno.Rsave",sep="."))	
		}
	}
	
	# Compute the global limits (cleaning up attribute names to match those in GML files)
	attr_ranges <- t(sapply(attr_values, function(x) { quantile(x, probs=c(0.00, pctile_color, 1.00), na.rm=TRUE) }))
	rownames(attr_ranges) <- sapply(rownames(attr_ranges), function(x) { gsub("[^A-Za-z0-9_]","",x) })
	write.table(attr_ranges, paste(out_dir,"global_boundaries.table",sep=""), col.names=FALSE)

	# Evaluate population rules if mapping provided
	ruleDir = system.file(paste("tools","PopulationRules","",sep=.Platform$file.sep),package="spade")
	
	if (!is.null(fcs_channel_mappings_json)) {
		library("rjson")
		library("hash")
		fcs_channel_mapping=fromJSON(fcs_channel_mappings_json)
		cat("Evaluating Population Rules....\n")
		#Ketaki: Is this correct? Look at only one fcs file. The channel ordering should be the same across all fcs files.
		population_rule_mappings = SPADE.createPopulationMapping(sampled_files[1], ruleDir, fcs_channel_mapping)
		for (filename in names(population_rule_mappings)) {
			for (sampled_file in sampled_files) {
				cat(paste("Rule:",filename,"\n",sep=" "))
				message("Evaluating population rule: ", filename, " for file: ", sampled_file)
				SPADE.evaluateCellTypeRule(out_dir,sampled_file,ruleCols=population_rule_mappings[[filename]],ruleDir=ruleDir,ruleFile=filename)     
			}
		}
	}

	### Produce statistics tables ###
	message("Producing tables...")
	dir.create(paste(out_dir,'tables',sep='/'),recursive=TRUE,showWarnings=FALSE)
	# Find the files
	files <- dir(out_dir,full.names=TRUE,pattern=glob2rx("*.anno.Rsave"))
	# Find all the params
	params <- unique(unlist(c(sapply(files, function(f) { load(f); colnames(anno); })))) #Update to remove redundant file writing
	
	# Transposition 1: Rows are nodes, cols are files, files are params
	dir.create(paste(out_dir,'tables','byAttribute',sep='/'),recursive=TRUE,showWarnings=FALSE)
	for (p in params) {
		pivot <- c()
		names <- c()
		for (f in files){
			load(f)
			f = basename(f)
			if (p %in% colnames(anno)) {
				pivot <- cbind(pivot, anno[,p])
				names <- c(names, f)
			}
		}
		names <- gsub("[[:alnum:][:punct:]]+/output/([[:alnum:][:punct:]]+).fcs.density.fcs.cluster.fcs.anno.Rsave", "\\1", names);
		pivot <- cbind(1:nrow(pivot),pivot)
		colnames(pivot) <- c("name", names)
		if (!is.null(pivot) && ncol(pivot) > 0) {
			write.csv(pivot, file=paste(out_dir,'tables/byAttribute/',p,'_table','.csv',sep=''), row.names=FALSE)
		}
	}

	byNodeData = list()
	# Transposition 2: Rows are nodes, cols are params, files are files
	dir.create(paste(out_dir,'tables','bySample',sep='/'),recursive=TRUE,showWarnings=FALSE)
	for (f in files) {
		load(f)
		f = basename(f)
		pivot <- anno
		names <- colnames(pivot)
		pivot <- cbind(1:nrow(pivot),pivot)
		colnames(pivot) <- c("ID", names)
		name <- gsub("output/([[:alnum:][:punct:]]+).fcs.density.fcs.cluster.fcs.anno.Rsave", "\\1", f)
		write.csv(pivot, file=paste(out_dir,'tables/bySample/',name,'_table','.csv',sep=''), row.names=FALSE)
	}

	# Transposition 3: Rows are params, cols are files, files are nodes
	dir.create(paste(out_dir,'tables','byNodeID',sep='/'),recursive=TRUE,showWarnings=FALSE)
	for (node in rownames(pivot)){
		tableData = list()
		for (f in files){
			load(f)
			f = basename(f)
			tableData[[f]]= unlist(anno[node,,drop=T])
		}
		tableData = do.call("cbind",tableData)
		write.csv(tableData, file=paste(out_dir,'tables/byNodeID/',node,'_table','.csv',sep=''), row.names=TRUE,quote=F)  
	}

	
	invisible(NULL)
}

# The following functions are copied from the TeachingDemos package, 
# authored by Greg Snow <greg.snow at imail.org>, and licensed under
# the Artistic-2.0 license.

cnvrt.coords <- function(x,y=NULL,input=c('usr','plt','fig','dev','tdev')) {

	input <- match.arg(input)
	xy <- xy.coords(x,y, recycle=TRUE)

	cusr <- par('usr')
	cplt <- par('plt')
	cfig <- par('fig')
	cdin <- par('din')
	comi <- par('omi')
	cdev <- c(comi[2]/cdin[1],(cdin[1]-comi[4])/cdin[1],
			comi[1]/cdin[2],(cdin[2]-comi[3])/cdin[2])

	if(input=='usr'){
		usr <- xy

		plt <- list()
		plt$x <- (xy$x-cusr[1])/(cusr[2]-cusr[1])
		plt$y <- (xy$y-cusr[3])/(cusr[4]-cusr[3])

		fig <- list()
		fig$x <- plt$x*(cplt[2]-cplt[1])+cplt[1]
		fig$y <- plt$y*(cplt[4]-cplt[3])+cplt[3]

		dev <- list()
		dev$x <- fig$x*(cfig[2]-cfig[1])+cfig[1]
		dev$y <- fig$y*(cfig[4]-cfig[3])+cfig[3]

		tdev <- list()
		tdev$x <- dev$x*(cdev[2]-cdev[1])+cdev[1]
		tdev$y <- dev$y*(cdev[4]-cdev[3])+cdev[3]

		return( list( usr=usr, plt=plt, fig=fig, dev=dev, tdev=tdev ) )
	}

	if(input=='plt') {

		plt <- xy

		usr <- list()
		usr$x <- plt$x*(cusr[2]-cusr[1])+cusr[1]
		usr$y <- plt$y*(cusr[4]-cusr[3])+cusr[3]

		fig <- list()
		fig$x <- plt$x*(cplt[2]-cplt[1])+cplt[1]
		fig$y <- plt$y*(cplt[4]-cplt[3])+cplt[3]

		dev <- list()
		dev$x <- fig$x*(cfig[2]-cfig[1])+cfig[1]
		dev$y <- fig$y*(cfig[4]-cfig[3])+cfig[3]

		tdev <- list()
		tdev$x <- dev$x*(cdev[2]-cdev[1])+cdev[1]
		tdev$y <- dev$y*(cdev[4]-cdev[3])+cdev[3]

		return( list( usr=usr, plt=plt, fig=fig, dev=dev, tdev=tdev ) )
	}

	if(input=='fig') {

		fig <- xy

		plt <- list()
		plt$x <- (fig$x-cplt[1])/(cplt[2]-cplt[1])
		plt$y <- (fig$y-cplt[3])/(cplt[4]-cplt[3])

		usr <- list()
		usr$x <- plt$x*(cusr[2]-cusr[1])+cusr[1]
		usr$y <- plt$y*(cusr[4]-cusr[3])+cusr[3]

		dev <- list()
		dev$x <- fig$x*(cfig[2]-cfig[1])+cfig[1]
		dev$y <- fig$y*(cfig[4]-cfig[3])+cfig[3]

		tdev <- list()
		tdev$x <- dev$x*(cdev[2]-cdev[1])+cdev[1]
		tdev$y <- dev$y*(cdev[4]-cdev[3])+cdev[3]

		return( list( usr=usr, plt=plt, fig=fig, dev=dev, tdev=tdev ) )
	}

	if(input=='dev'){
		dev <- xy

		fig <- list()
		fig$x <- (dev$x-cfig[1])/(cfig[2]-cfig[1])
		fig$y <- (dev$y-cfig[3])/(cfig[4]-cfig[3])

		plt <- list()
		plt$x <- (fig$x-cplt[1])/(cplt[2]-cplt[1])
		plt$y <- (fig$y-cplt[3])/(cplt[4]-cplt[3])

		usr <- list()
		usr$x <- plt$x*(cusr[2]-cusr[1])+cusr[1]
		usr$y <- plt$y*(cusr[4]-cusr[3])+cusr[3]

		tdev <- list()
		tdev$x <- dev$x*(cdev[2]-cdev[1])+cdev[1]
		tdev$y <- dev$y*(cdev[4]-cdev[3])+cdev[3]

		return( list( usr=usr, plt=plt, fig=fig, dev=dev, tdev=tdev ) )
	}

	if(input=='tdev'){
		tdev <- xy

		dev <- list()
		dev$x <- (tdev$x-cdev[1])/(cdev[2]-cdev[1])
		dev$y <- (tdev$y-cdev[3])/(cdev[4]-cdev[3])

		fig <- list()
		fig$x <- (dev$x-cfig[1])/(cfig[2]-cfig[1])
		fig$y <- (dev$y-cfig[3])/(cfig[4]-cfig[3])

		plt <- list()
		plt$x <- (fig$x-cplt[1])/(cplt[2]-cplt[1])
		plt$y <- (fig$y-cplt[3])/(cplt[4]-cplt[3])

		usr <- list()
		usr$x <- plt$x*(cusr[2]-cusr[1])+cusr[1]
		usr$y <- plt$y*(cusr[4]-cusr[3])+cusr[3]

		tdev <- list()
		tdev$x <- dev$x*(cdev[2]-cdev[1])+cdev[1]
		tdev$y <- dev$y*(cdev[4]-cdev[3])+cdev[3]

		return( list( usr=usr, plt=plt, fig=fig, dev=dev, tdev=tdev ) )
	}

}

subplot <- function(fun, x, y=NULL, size=c(1,1), vadj=0.5, hadj=0.5,
					inset=c(0,0), type=c('plt','fig'), pars=NULL){

	old.par <- par(no.readonly=TRUE)
	on.exit(par(old.par))

	type <- match.arg(type)

	if(missing(x)) x <- locator(2)

	if(is.character(x)) {
		if(length(inset) == 1) inset <- rep(inset,2)
		x.char <- x
		tmp <- par('usr')
		x <- (tmp[1]+tmp[2])/2
		y <- (tmp[3]+tmp[4])/2

		if( length(grep('left',x.char, ignore.case=TRUE))) {
			x <- tmp[1] + inset[1]*(tmp[2]-tmp[1])
			if(missing(hadj)) hadj <- 0
		}
		if( length(grep('right',x.char, ignore.case=TRUE))) {
			x <- tmp[2] - inset[1]*(tmp[2]-tmp[1])
			if(missing(hadj)) hadj <- 1
		}
		if( length(grep('top',x.char, ignore.case=TRUE))) {
			y <- tmp[4] - inset[2]*(tmp[4]-tmp[3])
			if(missing(vadj)) vadj <- 1
		}
		if( length(grep('bottom',x.char, ignore.case=TRUE))) {
			y <- tmp[3] + inset[2]*(tmp[4]-tmp[3])
			if(missing(vadj)) vadj <- 0
		}
	}

	xy <- xy.coords(x,y)

	if(length(xy$x) != 2){
	pin <- par('pin')
	tmp <- cnvrt.coords(xy$x[1],xy$y[1],'usr')$plt

	x <- c( tmp$x - hadj*size[1]/pin[1],
			tmp$x + (1-hadj)*size[1]/pin[1] )
	y <- c( tmp$y - vadj*size[2]/pin[2],
			tmp$y + (1-vadj)*size[2]/pin[2] )

	xy <- cnvrt.coords(x,y,'plt')$fig
	} else {
	xy <- cnvrt.coords(xy,,'usr')$fig
	}

	par(pars)
	if(type=='fig'){
		par(fig=c(xy$x,xy$y), new=TRUE)
	} else {
		par(plt=c(xy$x,xy$y), new=TRUE)
	}
	fun
	tmp.par <- par(no.readonly=TRUE)

	return(invisible(tmp.par))
}


SPADE.plot.trees <- function(graph, files, file_pattern="*anno.Rsave", out_dir=".", layout=SPADE.layout.arch, attr_pattern="percent|medians|fold|cvs", scale=NULL, pctile_color=c(0.02,0.98), normalize="global",size_scale_factor=1, edge.color="grey", bare=FALSE, palette="bluered") {
	if (!is.igraph(graph)) {
		stop("Not a graph object")
	}	
	if (!is.null(scale) && (!is.vector(scale) || length(scale) !=2)) {
		stop("scale must be a two element vector")
	}
	if (!is.vector(pctile_color) || length(pctile_color) != 2) {
		stop("pctile_color must be a two element vector with values in [0,1]")
	}

	if (length(files) == 1 && file.info(SPADE.strip.sep(files))$isdir) {
		files <- dir(SPADE.strip.sep(files),full.names=TRUE,pattern=glob2rx(file_pattern))    
	}
	out_dir <- SPADE.normalize.out_dir(out_dir)

	load_attr <- function(save_file) {
		anno <- NULL
		l <- load(save_file)
		stopifnot(l == "anno")
		# Note "anno" populated by load operation
		return(anno)
	}

	boundaries <- NULL
	if (normalize == "global") {
		boundaries <- c()  # Calculate ranges of all encountered attributes with trimmed outliers
		all_attrs  <- c()
		for (f in files) {
			attrs <- load_attr(f)
			for (i in grep(attr_pattern, colnames(attrs))) {
				n <- colnames(attrs)[i]
				all_attrs[[n]] <- c(all_attrs[[n]], attrs[,i])
			}
		}
		for (i in seq_along(all_attrs)) {
			boundaries[[names(all_attrs)[i]]] <- quantile(all_attrs[[i]], probs=pctile_color, na.rm=TRUE)
		}
	}

	if (is.function(layout))
		graph_l <- layout(graph)
	else
		graph_l <- layout	
	
	if (palette == "jet")
		palette <- colorRampPalette(c("#00007F", "blue", "#007FFF", "cyan", "#7FFF7F", "yellow", "#FF7F00", "red", "#7F0000"))
	else
		if (palette == "bluered")
			palette <- colorRampPalette(c("blue", "#007FFF", "cyan", "#7FFF7F", "yellow", "#FF7F00", "red"))
		else
			stop("Please use a supported color palette.  Options are 'bluered' or 'jet'")    	
		
	colorscale <- palette(100)

	for (f in files) {
		attrs <- load_attr(f)
	
		vsize <- attrs$percenttotal
		vsize <- vsize/(max(vsize,na.rm=TRUE)^(1/size_scale_factor)) * 3 + 2
		vsize[is.na(vsize) | (attrs$count == 0)] <- 1

		for (i in grep(attr_pattern, colnames(attrs))) {
			name <- colnames(attrs)[i]
			
			# Compute the color for each vertex using color gradient scaled from min to max
			attr <- attrs[,i]
			if (!is.null(scale))
				boundary <- scale
			else if (normalize == "global") { # Scale to global min/max
				boundary <- boundaries[[name]] # Recall trimmed global boundary for this attribute
			} else # Scale to local min/max
				boundary <- quantile(attr, probs=pctile_color, na.rm=TRUE)  # Trim outliers for this attribtue
				
			if (length(grep("^medians|percent|cvs", name)))
				boundary <- c(min(boundary), max(boundary))  # Dont make range symmetric for median or percent values
			else
				boundary <- c(-max(abs(boundary)), max(abs(boundary)))  # Make range symmetric for fold-change and ratio values
			
			boundary <- round(boundary, 2) # Round boundary values to 2 digits of precision so scale looks nice
			
			if (boundary[1] == boundary[2]) {  boundary <- c(boundary[1]-1, boundary[2]+1); }  # Prevent "zero" width gradients
				
			grad <- seq(boundary[1], boundary[2], length.out=length(colorscale))
		
			color <- colorscale[findInterval(attr, grad,all.inside=TRUE)]
			color[is.na(attr) | (attrs$count == 0)] <- "grey"
			if (grepl("^percenttotalratiolog$",name)) {
				# Color nodes with "infinite" ratios with top of color scale
				color[is.na(attr) & attrs$count > 0] <- tail(colorscale,1)
			}
			
			# Use "empty" circles for nodes with no cells, or otherwise "invalid" information
			fill_color  <- color
			is.na(fill_color) <- is.na(attr)
			frame_color <- color

			# Plot the tree, with legend showing the gradient
			pdf(paste(out_dir,basename(f),".",name,".pdf",sep=""))
			graph_aspect <- ((max(graph_l[,2])-min(graph_l[,2]))/(max(graph_l[,1])-min(graph_l[,1])))
			plot(graph, layout=graph_l, vertex.shape="circle", vertex.color=fill_color, vertex.frame.color=frame_color, edge.color=edge.color, vertex.size=vsize, vertex.label=NA, edge.arrow.size=.25, edge.arrow.width=1, asp=graph_aspect) 

			if (!bare) {			
				# Substitute pretty attribute names
				if (length(grep("^medians", name)))
					name <- sub("medians", "Median of ", name)
				else if (length(grep("^fold", name)))
					name <- sub("fold", "Arcsinh diff. of ", name)
				else if (grepl("^percenttotal$", name))
					name <- sub("percent", "Percent freq. of ", name)
				else if (grepl("^percenttotalratiolog$", name))
					name <- "Log10 of Ratio of Percent Total of Cells in Each Cluster"
				else if (grepl("^cvs", name))
					name <- sub("cvs", "Coeff. of Variation of ", name)

				# Make parameters used for clustering obvious
				if (grepl("_clust$", name))
					name <- sub("_clust", "\n(Used for tree-building)", name)
				
				title(main=paste(strsplit(basename(f),".fcs")[[1]][1], sub=name, sep="\n"))
				subplot(
					image(
						grad, c(1), matrix(1:length(colorscale),ncol=1), col=colorscale,
						xlab=ifelse(is.null(scale),paste("Range:",pctile_color[1],"to",pctile_color[2],"pctile"),""),
						ylab="", yaxt="n", xaxp=c(boundary,1)
					),
					x="right,bottom",size=c(1,.20)
				)
			}
			dev.off()
		}
	}
}

SPADE.createPopulationMapping <- function(fcsFile, ruleDir, fcs_channel_mapping){
	cat(paste("Processing FCS file:",fcsFile,"\n",sep=" "))
	#Read FCS file
	fcs = SPADE.read.FCS(paste(fcsFile,sep=""))

	#Extract column names as a vector
	params <- parameters(fcs);
	pd     <- pData(params);
	fcsColumns = as.vector(pd$name)

	#Walk through FCS file and create proteinName --> columnNumber map
	columnNumber = 0
	proteinToColumnNumber <- new.env()
	for(channelName in fcsColumns) {
		columnNumber = columnNumber + 1
		if (fcs_channel_mapping[channelName] != "NULL" && fcs_channel_mapping[channelName] != "-") {
			proteinName = fcs_channel_mapping[[channelName]]
			cat(paste("Found channelName to protein mapping:", channelName, proteinName, columnNumber, "\n", sep=" " ))
			proteinToColumnNumber[[proteinName]] = columnNumber
		}
	}

	population_mapping_rules = hash()
	ruleDir = system.file(paste("tools","PopulationRules","",sep=.Platform$file.sep),package="spade")
	for (filename in list.files(ruleDir,"*.txt")) {
		rules = read.table(paste(ruleDir,filename,sep=""), col.names=c("channel","hilo","protein"))
		cat(paste("Processing rule:", ruleDir, filename, "\n", sep=" " ))

		#Initialize a new vector -- there may be a more elegant way of doing this.
		ruleTranslation = as.vector("")
		for (protein in as.array(rules$protein)) {
			if (length(proteinToColumnNumber[[protein]]) > 0 && proteinToColumnNumber[[protein]] != "NULL")	{
				fcsColumnNumber = proteinToColumnNumber[[protein]]
				ruleTranslation = append(ruleTranslation, fcsColumnNumber)
			} else {
				ruleTranslation = as.vector("")
				cat(paste("protein ", protein, " not found."))
				cat(paste("Cannot process rule:", ruleDir, filename, "\n", sep=" " ))
				break; #Cannot process this rule file
			}
		}
		
		ruleTranslation = ruleTranslation[-1]
		if (length(ruleTranslation) > 0) {
			cat(paste("Successfully processed rule:", ruleDir, filename, "\n", sep=" " ))
			population_mapping_rules[[filename]] = as.numeric(ruleTranslation)
		}
	}

	population_mapping_rules
}
nolanlab/spade documentation built on May 23, 2019, 9:32 p.m.