R/Auxi.R

Defines functions RightFormula2LeftFormula extractFERRTerms extractLmeTerms getlmeObjectConfigs NormaliseDataFrame CatEstimateAndCI CheckWhetherNamesExistInListExtractCI modelSummaryPvalueExtract InteractionAndValue removeSingleValueContinuousVariables removeSingleLevelFactors expandDottedFormula intervalsCat intervalsCon all_vars0 lapply0 extractFisherSubTableResults warning0 message0 sort0 capitalise columnLevels colLevelsSimple columnChecks0 TermInModelAndnLevels RRextra RRDiscretizedEngine RRCut ExtractDatasetPLIfPossible RRGetTheLeveLWithMaxFrequency CheckTheValidityOfTheRRLower ReplaceTails ExpandTails addJitterToTheEntireData jitter0 RRNewObjectAndFormula NullOrValue CombineLevels permn pasteCollon OpenStatsListLevels as.numeric01 randRegSeed dataSignature FormulaDataColNames names0 decimalplaces renameVariableNameInList MoveResponseToRightOfTheFormula unmatrix0 multiBatch modelContrasts greplM paste01 TermInFormulaReturn FERR_FullComparisionsMessage ModelInReference prunelist ListOperation UnlistCall expand.formula formulaTerms getResponseFromFormula FormulaHasResponse FormulaHasIntercept AllTables ncombn fisher.test1 fisher.test0 checkTableForFisherTest ctest GenderIncludedInAnalysis printVarFreqfromTable cat.eff.size printformula dim0 SplitEffect termInTheModel MissingCounterFunction missingInVariable ModelChecks RandomEffectCheck listFun colExists RemoveDuplicatedColumnsFromDfandTrimWhiteSpace summary0 anova0 summary1 diff0 lop ConvDf2Flat noVariation eff.size pasteBracket extractCoefOfInterest optimiseMessage applyFormulaToData optimM percentageChangeCont dist1 FormulaContainsFunction order0 range0 droplevels0 CheckMissing dist0 sign0 ComplementaryFeasibleTermsInContFormula variablesInData FeasibleTermsInContFormula TypicalModel suppressMessagesANDWarnings reformulate0 dfNAreplce checkModelTermsInData pastedot pasteUnderscore truncate_text pasteComma replaceNull Matrix2List REML2ML is0 ML2REML asFactorAndSelectVariable .onAttach

# Startup message
.onAttach <- function(lib, pkg) {
  packageStartupMessage(
    paste0(
      "\n >===============================================================================<",
      "\n OpenStats is developed by International Mouse Phenotyping Consortium (IMPC) ",
      "\n More details           : https://www.mousephenotype.org/                         ",
      "\n Source code and issues : https://git.io/Jv5w0                                    ",
      "\n Contact us             : hamedhm@ebi.ac.uk                                       ",
      "\n >===============================================================================<"
    ),
    domain = NULL,
    appendLF = TRUE
  )
}

asFactorAndSelectVariable <- function(x = NULL, col = NULL) {
  x <- droplevels0(x)
  if (!is.null(x) &&
    !is.null(col) &&
    col %in% names(x)) {
    if (length(col) > 1) {
      message0("Only one element of the `col` parameter will be used.")
    }
    r <- as.factor(x[, col[1]])
  } else {
    r <- NULL
  }
  return(r)
}

ML2REML <- function(x, debug = FALSE) {
  if (!is.null(x) &&
      is0(x, c("lme", "gls"))) {
    if (debug) {
      message0("\tRecovering the REML object from ML ...")
    }
    x <- tryCatch(
      expr = update(x, method = "REML"),
      error = function(e) {
        message0("\t\tError(s) in updating ML object to REML. See: ")
        message0("\t\t", e, breakLine = FALSE)
        return(NULL)
      },
      warning = function(w) {
        message0("\t\tWarning(s) in updating ML object to REML. See: ")
        message0("\t\t", w, breakLine = FALSE)
        return(NULL)
      }
    )
  }
  return(x)
}

ks.test0 <- function (x, ...) {
	r <- tryCatch(
		expr = ks.test(x,...),
		error = function(e) {
			message0("\t\tCannot perform ks.test(). See: ")
			message0("\t\t", e, breakLine = FALSE)
			return(NULL)
		},
		warning = function(w) {
			message0("\t\tCannot perform ks,test(). See: ")
			message0("\t\t", w, breakLine = FALSE)
			return(NULL)
		}
	)
}

is0 = function(obj = NULL, class2 = NULL) {
  r = FALSE
  if (is.null(obj) ||
      is.null(class2) ||
      length(class2) < 1)
    return (r)

  for (cl2 in class2) {
    r = r || is(obj, cl2)
  }
  return(r)
}

REML2ML <- function(x, debug = FALSE) {
  if (!is.null(x) &&
      is0(x, c("lme", "gls"))) {
    if (debug) {
      message0("\tCoverting REML object to ML ...")
    }
    x <- tryCatch(
      expr = update(x, method = "ML"),
      error = function(e) {
        message0("\t\tError(s) in updating REML object to ML. See: ")
        message0("\t\t", e, breakLine = FALSE)
        return(NULL)
      },
      warning = function(w) {
        message0("\t\tWarning(s) in updating REML object to ML. See: ")
        message0("\t\t", w, breakLine = FALSE)
        return(NULL)
      }
    )
  }
  return(x)
}



Matrix2List <- function(x, ...) {
  if (is.null(x)) {
    return(NULL)
  }

  if (length(x) == 1 || is0(x, "numeric")) {
    return(as.list(x))
  }

  if (!is0(x, "matrix")) {
    x <- as.matrix(x)
  }
  r <- as.list(unmatrix0(x, ...))
  return(r)
}

replaceNull <- function(x, replaceBy = "NULL") {
  x <- sapply(x, function(xx) {
    if (is.null(xx)) {
      replaceBy
    } else {
      xx
    }
  })
  return(unlist(x))
}
pasteComma <- function(...,
                       replaceNull = TRUE,
                       truncate = TRUE,
                       width = 100,
                       trailingSpace = TRUE,
                       replaceNullby = "NULL",
                       sep = ",") {
  sep <- ifelse(trailingSpace && sep %in% ",", paste0(sep, " "), sep)
  if (replaceNull) {
    r <- paste(
      replaceNull(list(...), replaceBy = replaceNullby),
      sep      = sep,
      collapse = sep
    )
  } else {
    r <- paste(...,
      sep      = sep,
      collapse = sep
    )
  }

  if (truncate) {
    r <- truncate_text(r, width)
  }

  return(r)
}

truncate_text <- function(x, width) {
  ifelse(nchar(x) > width, paste0(strtrim(x, width), " ..."), x)
}

pasteUnderscore <- function(...) {
  paste(..., sep = "_", collapse = "_")
}
pastedot <- function(...) {
  paste(..., sep = ".", collapse = ".")
}
checkModelTermsInData <- function(formula,
                                  data,
                                  responseIsTheFirst = TRUE,
                                  pattern = "[.~+-()]") {
  formula <- as.formula(formula)
  vars <- all_vars0(formula, functions = FALSE)
  vars <- vars[!grepl(
    pattern = pattern,
    x = vars,
    fixed = TRUE
  )]
  if (responseIsTheFirst) {
    if (!(vars[1] %in% names(data))) {
      message0(
        "Response does not exist in the data!\n\tFormula: ",
        printformula(formula)
      )
      stop(
        "Response has not been specified properly. Please check that the response exists in the data"
      )
    }
  }
  In <- vars %in% names(data)
  if (any(!In)) {
    message0(
      "Some terms in the model are not included in the data. See: \n\t  ",
      pasteComma(vars[!In], replaceNull = FALSE, truncate = FALSE),
      "\n\t Initial  model: ",
      printformula(formula)
    )
    ft <- vars [!In]
    formula <- update.formula(
      formula,
      reformulate0(
        termlabels = c(".", ft, paste0(ft, ":.")),
        response = NULL,
        intercept = TRUE,
        sep = "-"
      )
    )
    message0("\t Polished model: ", printformula(formula))
  }
  return(formula)
}




dfNAreplce <- function(df,
                       NAsymbol = NULL,
                       replceNaBy = NA) {
  if (!is.null(NAsymbol) &&
    length(NAsymbol) > 0) {
    message0(
      "Checking the specified missing values [x",
      length(NAsymbol),
      "] (",
      pasteComma(paste0("`", NAsymbol, "`")),
      ") ..."
    )
    #### This is much faster than df %in% NAsymbol
    n <- length(NAsymbol)
    for (i in seq_along(NAsymbol)) {
      NAs <- NAsymbol[i]
      message0("\t", i, "/", n, ". Checking (`", NAs, "`) ...")
      df[df == NAs] <- replceNaBy
    }
  }
  return(df)
}

reformulate0 <- function(termlabels,
                         response = NULL,
                         intercept = TRUE,
                         sep = "+") {
  if (!is.character(termlabels) || !length(termlabels)) {
    stop("'termlabels' must be a character vector of length at least one")
  }
  has.resp <- !is.null(response)
  termtext <- paste(if (has.resp) {
    "response"
  },
  "~",
  paste(termlabels, collapse = sep),
  collapse = ""
  )
  if (!intercept) {
    termtext <- paste(termtext, "- 1")
  }
  rval <- eval(parse(text = termtext, keep.source = FALSE)[[1L]])
  if (has.resp) {
    rval[[2L]] <- if (is.character(response)) {
      as.symbol(response)
    } else {
      response
    }
  }
  environment(rval) <- parent.frame()
  rval
}

suppressMessagesANDWarnings <- function(exp,
                                        sup.messages = TRUE,
                                        sup.warnings = FALSE) {
  if (sup.messages && sup.warnings) {
    suppressMessages(suppressWarnings(exp))
  } else if (sup.messages && !sup.warnings) {
    suppressMessages(exp)
  } else if (!sup.messages && sup.warnings) {
    suppressWarnings(exp)
  } else {
    exp
  }
}
# Typical fixed effect
TypicalModel <- function(depVariable,
                         withWeight = TRUE,
                         Sex = TRUE,
                         LifeStage = TRUE,
                         mandatory = "Genotype",
                         data,
                         others = NULL,
                         debug = TRUE) {
  colNames <- colnames(data)
  if (!mandatory %in% colNames) {
    stop("Genotype does not found in the dataset!")
  }

  fixed <- reformulate(termlabels = mandatory, response = depVariable)
  if (Sex && ("Sex" %in% colNames)) {
    fixed <- update(fixed, ~ . * Sex)
  }
  if (LifeStage && ("LifeStage" %in% colNames)) {
    fixed <- update(fixed, ~ . * LifeStage)
  }
  if (withWeight && ("Weight" %in% colNames)) {
    fixed <- update(fixed, ~ . + Weight)
  }
  if (!is.null(others)) {
    fixed <- update(fixed, reformulate(response = NULL, termlabels = c(".", others)))
  }
  ####
  if (debug) {
    message0("Initial model: ", printformula(fixed))
  }
  return(fixed)
}



FeasibleTermsInContFormula <- function(formula, data) {
  if (is.null(formula) || is.null(data)) {
    message0("Null data or the formula. Check the data and/or formula")
    stop()
  }
  Allvars <- all_vars0(formula)[all_vars0(formula) %in% names(data)]
  isCat <- !is.continuous(data[, Allvars, drop = FALSE])
  vars <- Allvars[isCat]
  lvars <- length(vars)
  names <- r <- NULL
  if (getResponseFromFormula(formula = formula) %in% vars) {
    message0("\t Response is included in the checks ....")
  }
  if (lvars > 0) {
    for (i in seq_len(lvars)) {
      message0(
        "\t",
        i,
        " of ",
        lvars,
        ". Checking for the feasibility of terms and interactions ..."
      )
      cmb <- combn(vars, i)
      for (j in seq_len(ncol(cmb))) {
        message0("\t\t Checking ", pasteComma(cmb[, j]), " ...")
        xtb <- xtabs(
          formula = paste0("~", paste0(cmb[, j], collapse = "+")),
          data = data,
          drop.unused.levels = FALSE
        )
        r <- c(r, if (all(dim(xtb) >= 2)) {
          min(xtb, na.rm = TRUE)
        } else {
          0
        })
        names <- c(names, paste0(cmb[, j], collapse = ":"))
      }
    }
    return(data.frame(
      names = names,
      min.freq = r,
      stringsAsFactors = FALSE
    ))
  } else {
    return(NULL)
  }
}

variablesInData <- function(df, names, debug = TRUE) {
  if (is.null(df) || is.null(names) || sum(names %in% names(df)) < 1) {
    return(NULL)
  }
  newNames <- names[names %in% names(df)]
  if (debug) {
    message0(
      "Variables that being found in data: ",
      pasteComma(newNames, truncate = FALSE)
    )
  }
  return(newNames)
}

ComplementaryFeasibleTermsInContFormula <- function(formula, data) {
  message0(
    "Checking for the feasibility of terms and interactions ...\n\t Formula: ",
    printformula(formula)
  )
  fbm <- FeasibleTermsInContFormula(formula = formula, data = data)
  if (!is.null(fbm) &&
    (min(fbm$min.freq, na.rm = TRUE) < 1 ||
      length(formulaTerms(formula)) != nrow(fbm))) {
    formula <- update.formula(
      old = formula,
      new =
        reformulate0(
          termlabels = c(".", fbm$names[fbm$min.freq <= 0]),
          response = ".",
          intercept = TRUE,
          sep = "-"
        )
    )
    if (min(fbm$min.freq, na.rm = TRUE) < 1) {
      message0(
        'The following term(s) removed because there is either "no data" or "no data for the interactions":\n\t ** Note. Not all terms necessarily in the initial model \n\t ',
        pasteComma(fbm[fbm$min.freq <= 0, c("names")], replaceNull = FALSE, truncate = FALSE)
      )
    }
  }
  return(formula)
}

sign0 <- function(x) {
  if (is.null(x)) {
    return(NULL)
  }
  if (sign(x) > 0) {
    return("positive")
  } else if (sign(x) == 0) {
    return("neutral")
  } else if (sign(x) < 0) {
    return("negative")
  } else {
    return(NULL)
  }
}

dist0 <- function(x, func = lower.tri) {
  if (is.null(x)) {
    return(NULL)
  }
  out <- outer(x, x, `-`)
  r <- out[func(out)]
  return(r)
}

CheckMissing <- function(data, formula) {
  if (is.null(formula) || is.null(data)) {
    message0("Null data or the formula. Check the data and/or formula")
    stop()
  }
  org.data <- data
  new.data <- data[complete.cases(data[, all_vars0(formula)]), ]
  missings <- ifelse(all(dim(org.data) == dim(new.data)), 0, dim(org.data)[1] -
    dim(new.data)[1])
  if (missings) {
    message0(
      "The data (variable(s) = ",
      pasteComma(all_vars0(formula), truncate = FALSE),
      ") contain ",
      missings,
      " missing(s) ...\n\tMissing data removed"
    )
  }
  return(invisible(
    list(
      org.data = org.data,
      new.data = droplevels0(new.data),
      missings = missings
    )
  ))
}

droplevels0 <- function(x, ...) {
  if (is.null(x) ||
    class(x) %in% c("matrix", "integer", "double", "numeric")) {
    return(x)
  }
  return(droplevels(x, ...))
}

range0 <- function(x, ...) {
  ran <- range(x, na.rm = TRUE)
  if (length(ran) == 2) {
    return(diff(ran))
  } else {
    return(NULL)
  }
}

order0 <- function(x, levels = FALSE) {
  if (is.null(x)) {
    return(NULL)
  }

  if (levels) {
    r <- x[order(levels(x))]
  } else {
    r <- x[order(x)]
  }
  return(r)
}


FormulaContainsFunction <- function(formula) {
  message0("Checking the input model for including functions ...")
  if (is.null(formula)) {
    message0("Blank formula!")
    return(NULL)
  }
  #
  fFull <- all_vars0(formula, functions = TRUE)
  FAbstract <- all_vars0(formula, functions = FALSE)
  r <- !identical(
    fFull    [grepl(pattern = "[0-9A-Za-z^\\/]", x = fFull)],
    FAbstract[grepl(pattern = "[0-9A-Za-z]", x = FAbstract)]
  )
  if (r) {
    message0("\t Function detected in the input model ...")
  }

  return(r)
}

dist1 = function(x) {
  d <-
    tryCatch(
      expr = outer(unlist(x), unlist(x), "-"),
      error = function(e) {
        message0(
          "\t\tError(s) in the (distance calculation - dist1 function) for the effect size estimation. See: "
        )
        message0("\t\t", e, breakLine = FALSE)
        return(NULL)
      },
      warning = function(w) {
        message0(
          "\t\tWarning(s) in the (distance calculation - dist1 function for the effect size estimation. See: "
        )
        message0("\t\t", w, breakLine = FALSE)
        return(NULL)
      }
    )

  if (is.null(d)) {
    return(NULL)
  }
  ###
  d[upper.tri(d, diag = TRUE)] <- NA

  if (all(is.na(d))) {
    return(NULL)
  }
  minmax = c(max(d, na.rm = TRUE), min(d, na.rm = TRUE))
  maxVal = minmax[which.max(abs(minmax))]

  return(head(maxVal, 1))
}

percentageChangeCont <- function(model,
                                 data,
                                 variable,
                                 depVar,
                                 individual = TRUE,
                                 mainEffsOnlyWhenIndivi = "Sex",
                                 FUN = range0,
                                 sep = " ") {
  if (!(
    !is.null(data) &&
      (!is.null(variable) || !is.null(mainEffsOnlyWhenIndivi)) &&
      !is.null(model) &&
      !is.null(FUN(data[, depVar])) &&
      FUN(data[, depVar]) != 0
  )) {
    return(NULL)
  }
  ####
  model <-
    tryCatch(
      expr = update(model,
        data = NormaliseDataFrame(data)
      ),
      error = function(e) {
        message0(
          "\t\tError(s) in the (combined) effect size estimation for",
          pasteComma(variable),
          ". See: "
        )
        message0("\t\t", e, breakLine = FALSE)
        return(NULL)
      },
      warning = function(w) {
        message0(
          "\t\tWarning(s) in the (combined) effect size estimation for",
          pasteComma(variable),
          ". See: "
        )
        message0("\t\t", w, breakLine = FALSE)
        return(NULL)
      }
    )
  if (is.null(model)) {
    return(NULL)
  }
  coefs <- unlist(
    suppressMessagesANDWarnings(
      summary(model, verbose = FALSE)$tTable[, 1],
      sup.messages = TRUE,
      sup.warnings = TRUE
    )
  )
  ######
  ran <- 1 # --ONE-- Just to cancel 100 but keep the percent (*100) FUN(data[, depVar])
  if (is.null(coefs) || is.null(ran) || is.nan(ran)) {
    return(NULL)
  }
  ######
  if (individual) {
    out <- sapply(variable, function(x) {
      message0(
        "\tCalculating the percentage change for: ",
        pasteComma(x)
      )
      if (is.numeric(data[, x])) {
        r <- coefs[-1]
        names(r) <- NULL
      } else {
        r <- coefs
        lr <- length(r)
        ol <- order0(levels(data[, x]))
        ##########
        if (lr != nlevels(data[, x])) {
          message0(
            "\tCare reguired for the percentage change calculation for: ",
            x,
            ". Levels = ",
            names(r),
            "Coefficients: ",
            r
          )
          names(r) <- paste(ol[seq_len(lr)], "_CareRequired")
        } else {
          names(r) <- ol
        }
      }
      return(r / ran * 100)
    }, USE.NAMES = TRUE)
    return(Matrix2List(out, sep = sep))
  } else {
    out <- extractCoefOfInterest(
      coefs = coefs,
      main = mainEffsOnlyWhenIndivi,
      data = data
    )
    return(
      list(
        "Value"               = as.list(out),
        "Variable"            = mainEffsOnlyWhenIndivi,
        "Model"               = printformula(formula(model)),
        "Type"                = "Standardized interaction coefficients ",
        "Percentage change"   = Matrix2List(out / ran * 100, sep = sep)
      )
    )
  }
}

optimM <- function(optimise) {
  paste0(c("Fixed term = ", "Weight term = ", "Random effect term = "),
    optimise,
    collapse = ", "
  )
}

applyFormulaToData <- function(formula = NULL, data, add = FALSE) {
  if (is.null(formula) || is.null(all_vars0(formula))) {
    return(data)
  }
  if (is.null(data)) {
    return(NULL)
  }
  nms <-
    trimws(scan(
      text = paste(unlist(as.list(
        attr(terms(as.formula(formula)), "variables")
      ))[-1], sep = "+", collapse = " + "),
      what = "",
      sep = "+",
      quiet = TRUE
    ))

  m <- sapply(nms, function(x) {
    eval(parse(text = x), data)
  })
  if (!is.null(m) && add) {
    m <- cbind(data, m)
  }
  return(list(data = m, names = nms))
}

optimiseMessage <- function(optimise) {
  message0(
    "The model optimisation is ",
    ifelse(
      all(optimise),
      "in progress ...",
      paste0("in the following order:\n\t", optimM(optimise))
    )
  )
}

extractCoefOfInterest <- function(coefs, main = "Sex", data) {
  lvls <- lapply(
    main,
    FUN = function(x) {
      if (!is.numeric(data[, x])) {
        r <- paste(x, levels(data[, x]), sep = "")
        r <- c(paste0(r, ":"), paste0(":", r))
      } else {
        r <- x
      }
      return(r)
    }
  )

  Cnames <- names(coefs)
  r <- coefs[grepl(
    pattern = pasteBracket(
      unlist(lvls),
      left = "",
      right = "",
      col = "|"
    ),
    x = Cnames
  )]
  return(r)
}

pasteBracket <- function(...,
                         replaceNull = TRUE,
                         col = "|",
                         right = "]:",
                         left = "[") {
  if (replaceNull) {
    paste(
      left,
      replaceNull(list(...), replaceBy = "NULL"),
      right,
      sep = "",
      collapse = col
    )
  } else {
    paste(left, ..., right, sep = " ", collapse = col)
  }
}

eff.size <- function(object,
                     data = NULL,
                     depVariable = "data_point",
                     effOfInd = "Genotype",
                     errorReturn = NULL,
                     debug = FALSE) {
  if (all(is.null(data))) {
    data <- NormaliseDataFrame(getData(object))
  }
  f <- reformulate(termlabels = effOfInd, depVariable)
  # Remove NAs
  data <- data[complete.cases(data[, all_vars0(f)]), ]
  if (!(depVariable %in% names(data) &&
    length(na.omit(data[, depVariable])) > 1)) {
    return(NULL)
  }

  agr <- aggregate(f, data = data, FUN = function(x) {
    mean(x, na.rm = TRUE)
  })
  if (debug) {
    cat("\n\n")
    print(agr)
    print(dim(agr))
  }
  if (any(dim(agr) < 2)) {
    message0(
      " \t\t(standardized) Effect size estimation: No variation or less than two levels in ",
      pasteComma(effOfInd, collapse = ",")
    )
    return(errorReturn)
  }

  NModel <-
    tryCatch(
      expr = update(
        object,
        reformulate(
          termlabels = effOfInd,
          response = ".",
          intercept = TRUE
        ),
        data = data
      ),
      error = function(e) {
        message0(
          "\t\tError(s) in the effect size estimation for",
          pasteComma(effOfInd),
          ". See: "
        )
        message0("\t\t", e, breakLine = FALSE)
        return(NULL)
      },
      warning = function(w) {
        message0(
          "\t\tWarning(s) in the effect size estimation for",
          pasteComma(effOfInd),
          ". See: "
        )
        message0("\t\t", w, breakLine = FALSE)
        return(NULL)
      }
    )
  if (!is.null(NModel)) {
    CoefEffSizes <- is.continuous(data[, effOfInd, drop = FALSE])
    PerChange <- percentageChangeCont(
      model = NModel,
      data = data,
      variable = effOfInd,
      depVar = depVariable
    )
    if (sum(CoefEffSizes)) {
      # For continues covariates it is the coefficient
      efSi <- list(
        "Value"               = as.list(coef(NModel))[[effOfInd]][1],
        "Variable"            = effOfInd,
        "Model"               = printformula(formula(NModel)),
        "Type"                = "Standardized coefficient",
        "Percentage change"   = PerChange
      )
    } else {
      # For categorical covariates it is the mean difference
      MDiff <- dist1(agr[, depVariable, drop = FALSE])
      r <- resid(NModel)
      sd <- sd0(r, na.rm = TRUE)
      efSi <- list(
        "Value" = ifelse(!is.na(sd) &&
          sd > 0 && !is.null(MDiff), MDiff / sd, NA),
        "Variable" = effOfInd,
        "Model" = printformula(formula(NModel)),
        "Type" = "Mean differences. Formula = (mu_treatment - mu_control)/sd(residuals)",
        "Percentage change" = PerChange
      )
    }
  } else {
    efSi <- errorReturn
  }
  return(efSi)
}

noVariation <- function(data, f = "~Genotype") {
  xtb <- xtabs(
    formula = f,
    drop.unused.levels = TRUE,
    data = data
  )
  if (any(dim(xtb) < 2)) {
    return(TRUE)
  } else {
    return(FALSE)
  }
}

ConvDf2Flat <- function(dframe,
                        ch1 = "*",
                        ch2 = ":",
                        chend = ";") {
  out <- apply(as.data.frame(dframe), 1, function(x) {
    if (length(x) > 2) {
      paste(paste(paste(x[seq_len(length(x) - 1)], collapse = ch1),
        trimws(x[length(x)]),
        sep = ch2
      ),
      collapse = chend
      )
    } else if (length(x) == 2) {
      paste(paste(x[1], ch2, x[2]), collapse = chend)
    } else {
      paste(paste(x), collapse = chend)
    }
  })
  return(out)
}

#### List of all procedures
lop <- function() {
  return(
    c(
      "TYPICAL",
      "ABR",
      "ACS",
      "ALZ",
      "BLK",
      "BWT",
      "CAL",
      "CBC",
      "CHL",
      "CSD",
      "DXA",
      "ECG",
      "ECH",
      "ELZ",
      "EVL",
      "EVM",
      "EVO",
      "EVP",
      "EYE",
      "FER",
      "GEL",
      "GEM",
      "GEO",
      "GEP",
      "GPL",
      "GPM",
      "GPO",
      "GRS",
      "HEM",
      "HIS",
      "HWT",
      "IMM",
      "INS",
      "IPG",
      "OFD",
      "PAT",
      "VIA",
      "XRY"
    )
  )
}

diff0 <- function(x) {
  r <- if (length(x) < 2) {
    x
  } else {
    diff(x)
  }
  return(r)
}

summary1 <- function(x, ...) {
  r <- tryCatch(
    expr = summary(x, ...),
    warning = function(war) {
      message0("\t * The summary failed with the warning (see below): ")
      message0("\t", war, breakLine = FALSE)
      return(NULL)
    },
    error = function(err) {
      message0("\t * The summary failed with the error (see below): ")
      message0("\t   ", err, breakLine = FALSE)
      return(NULL)
    }
  )
  return(r)
}

anova0 <- function(x, ...) {
  r <- tryCatch(
    expr = anova(x, ...),
    warning = function(war) {
      message0("\t * The ANOVA failed with the warning (see below): ")
      message0("\t", war, breakLine = FALSE)
      return(NULL)
    },
    error = function(err) {
      message0("\t * The ANOVA failed with the error (see below): ")
      message0("\t   ", err, breakLine = FALSE)
      return(NULL)
    }
  )
  return(r)
}

summary0 <- function(x, ...) {
  if (is.null(x) || length(x) < 1) {
    message0("Null column found in the data!")
    return(x)
  }
  if (is.numeric(x)) {
    r <- summary1(diff0(x), ...)
  } else {
    xx <- as.factor(x)
    r <- c(sort(levels(xx)), summary1(diff0(as.integer(xx)), ...))
  }
  return(r)
}

RemoveDuplicatedColumnsFromDfandTrimWhiteSpace <- function(x, formula = NULL, trimWS = TRUE) {
  x <- as.data.frame(x)
  if (!is.null(formula) ||
    sum(all_vars0(formula) %in% names(x)) > 1) {
    vars <- all_vars0(formula)
  } else {
    vars <- names(x)
  }
  colVars <- names(x) %in% vars
  if (sum(colVars)) {
    subX <- x[, colVars, drop = FALSE]
    #####################
    if (trimWS) {
      subX <- trimColsInDf(df = subX)
    }
    #####################
    message0(
      "Checking duplications in the data model:\n\t ",
      pasteComma(names(x)[colVars],
        truncate = FALSE
      )
    )

    # numCols = is.continuous(subX)
    # ConCols = subX[,  numCols, drop = FALSE]
    # CatCols = subX[, !numCols, drop = FALSE]
    dcols <- duplicated(lapply(subX, summary0))
    if (any(dcols)) {
      message0(
        "\tDuplicated columns found (and removed) in the input data. Removed variables:\n\t ",
        pasteComma(names(subX)[dcols], truncate = FALSE)
      )
    } else {
      message0("\tNo duplicate found.")
    }
    uniqCols <- subX   [, !dcols, drop = FALSE]
    r <- cbind(x[, !colVars, drop = FALSE], uniqCols)
    return(r)
  } else {
    message0("Formula terms do not exist in the input data")
    return(x)
  }
}

colExists <- function(name, data) {
  if ((name %in% names(data)) &&
    length(complete.cases(data[, name])) > 0) {
    return(TRUE)
  } else {
    return(FALSE)
  }
}

listFun <- function(list,
                    FUN,
                    debug = FALSE,
                    messageUnusedArgs = FALSE) {
  if (debug) {
    message0("\tApplied model: ", FUN)
  }
  fArgs <- names(list) %in% formalArgs(args(FUN))
  if (messageUnusedArgs &&
    debug &&
    !identical(list[names(list)[fArgs]], list)) {
    message0(
      "Unused argument(s) in the function input. See:\n\t",
      pasteComma(names(list)[!fArgs],
        truncate = TRUE,
        width = 75
      )
    )
  }
  l <- list[names(list)[fArgs]]
  return(l)
}

RandomEffectCheck <- function(formula, data) {
  if (is.null(formula) || is.null(data)) {
    return(NULL)
  }
  message0(
    "Checking the random effect term ...\n\tFormula: ",
    printformula(formula)
  )
  difTerms <- setdiff(all_vars0(formula), names(data))
  if (length(difTerms)) {
    message0(
      "\tSome terms in the random effect do not exist in the data. See:\n\t ",
      difTerms,
      "\n\tRandom effect is set to NULL"
    )
    return(NULL)
  } else {
    return(formula)
  }
}

ModelChecks <- function(fixed,
                        data,
                        checks = c(0, 0, 0, 0),
                        responseIsTheFirst = TRUE) {
  if (length(checks) != 4) {
    message0('"checks" must be a vector of 4 0/1 TRUE/FALSE values. Example c(1,1,1,1) or c(1,1,1,0) or c(0,0,0,0)')
    return(fixed)
  }
  if (any(checks > 0)) {
    if (checks[1]) {
      fixed <- checkModelTermsInData(
        formula = fixed,
        data = data,
        responseIsTheFirst = TRUE
      )
    }
    if (checks[2]) {
      fixed <- removeSingleLevelFactors(formula = fixed, data = data)
    }
    if (checks[3]) {
      fixed <- removeSingleValueContinuousVariables(formula = fixed, data = data)
    }
    if (checks[4]) {
      fixed <- ComplementaryFeasibleTermsInContFormula(formula = fixed, data = data)
    }
    message0("\tChecked model: ", printformula(fixed))
  }
  fixed <- missingInVariable(
    fixed = fixed,
    data = data,
    threshold = 50
  )
  return(fixed)
}

missingInVariable <- function(fixed = NULL,
                              data = NULL,
                              threshold = 50) {
  message0("Check missings in progress ...")
  if (is.null(data) || nrow(data) < 1) {
    message0("\tNo data at all")
    return(fixed)
  }
  if (is.null(fixed) || length(all_vars0(fixed)) < 1) {
    message0("\tNo formula imported")
    return(fixed)
  }
  vars <- all_vars0(fixed)
  if (length(vars) < 1 || all(!vars %in% names(data))) {
    message0("\tVariables in the formula do not exist in the input data")
    return(fixed)
  }
  newVars <- vars[vars %in% names(data)]
  lapply(newVars, function(v) {
    MissingCounterFunction(
      v = v,
      data = data,
      threshold = threshold
    )
  })
  return(fixed)
}

MissingCounterFunction <- function(v, data, threshold) {
  if (length(data[, v]) < 1) {
    return(NULL)
  }
  missingPercentage <- round(sum(is.na(data[, v])) / length(data[, v]) * 100, 2)
  message0(
    "\t Missings in variable `",
    v,
    "`: ",
    missingPercentage,
    ifelse(
      length(threshold) > 0 &&
        missingPercentage > threshold,
      paste0("% [more than ", threshold, "% of the data]"),
      "%"
    )
  )
}

termInTheModel <- function(model, term, message = FALSE) {
  if (message) {
    message0(
      "Search for Term:\n Term: ",
      paste(term, collapse = ","),
      "\n\t Model: ",
      paste(formula(model), collapse = ", ")
    )
  }
  return(all(term %in% all_vars0(formula(model))))
}

SplitEffect <- function(finalformula,
                        fullModelFormula,
                        F.Model,
                        data,
                        depVariable,
                        mandatoryVar = "Genotype",
                        ci_levels = .95) {
  Allargs <- all_vars0(fullModelFormula)[!all_vars0(fullModelFormula) %in% c(depVariable, mandatoryVar)]
  if (is.null(Allargs)) {
    message0("Nothing to split on ...")
    return(NULL)
  }
  isCat <- !is.continuous(data[, Allargs, drop = FALSE])
  args <- Allargs[isCat]
  argsCon <- if (length(Allargs[!isCat]) > 0) {
    Allargs[!isCat]
  } else {
    # 	NULL
    1
  }
  largs <- length(args)
  dname <- names(data)
  l <- NULL
  names <- c()
  counter <- 1
  if (largs > 0) {
    for (i in seq_len(largs)) {
      argComb <- combn(args, i, simplify = TRUE)
      for (j in seq_len(ncol(argComb))) {
        arg <- as.vector(argComb[, j])
        if (arg %in% dname &&
          !is.numeric(data[, arg]) &&
          termInTheModel(model = fullModelFormula, term = arg)) {
          message0(
            counter,
            ". Split on ",
            paste0(arg, collapse = " & "),
            " ..."
          )
          newModel <- update(
            reformulate(
              response = depVariable,
              termlabels = c(
                paste(
                  mandatoryVar,
                  arg,
                  collapse = "*",
                  sep = "*"
                ),
                argsCon
              ),
              intercept = TRUE
            ),
            paste0(".~.-", mandatoryVar)
          )
          message0(
            "Checking the split model:\n\t",
            printformula(newModel)
          )

          l0 <- tryCatch(
            update(
              F.Model,
              newModel
            ),
            error = function(e) {
              message0(e, breakLine = FALSE)
              return(NULL)
            },
            warning = function(w) {
              message0(w, breakLine = FALSE)
              return(NULL)
            }
          )
          message0(
            "\tTested model: ",
            printformula(newModel),
            ifelse(!is.null(l0), " [Successful]", " [Failed]"),
            breakLine = FALSE
          )
          if (!is.null(l0)) {
            l0 <- intervalsCon(object = l0, lvls = ci_levels)
            l0$MainEffect <- arg
            l0$SplitFormula <- printformula(newModel)
            l[[counter]] <- l0
            names[counter] <- paste(
              paste0(mandatoryVar, collapse = "_"),
              paste0(arg, collapse = "."),
              collapse = "_",
              sep      = "_"
            )
            counter <- counter + 1
          }
        }
      }
    }
    if (length(names) > 0) {
      message0(
        "SplitEffects. Output names: ",
        paste0(names, collapse = ", ")
      )
      names(l) <- paste0(names)
    }
  }
  return(l)
}

dim0 <- function(...) {
  args <- list(...)
  r <- lapply(args, function(x) {
    if (is.null(dim(x))) {
      return(length(x))
    }
    dim(x)
  })
  unlist(r)
}

printformula <- function(formula, message = TRUE) {
  if (!is.null(formula)) {
    r <- paste01(format(formula, trim = TRUE, width = 0), collapse = "")
  } else {
    if (message) {
      message0("Ops! the formula is blank")
    }
    r <- NULL
  }
  return(r)
}
# Categorical effect size
# https://github.com/mpi2/stats_working_group/raw/master/PhenStatUserGuide/PhenStatUsersGuide.pdf p122
cat.eff.size <- function(xtb,
                         varName = NULL,
                         formula = NULL) {
  if (any(dim(xtb) < 1)) {
    r <- NULL
  } else {
    r <- max(apply(prop.table(xtb, margin = 2), 1, function(x) {
      max(dist(x, method = "maximum", diag = TRUE), na.rm = TRUE)
    }), na.rm = TRUE)
  }
  out <- list(
    value = r,
    variable = ifelse(!is.null(varName),
      varName,
      "Variable does not exist"
    ),
    model = printformula(RightFormula2LeftFormula(formula, removeResIfExists = TRUE)),
    type = "Proportion change",
    "percentage change" = NULL
  )
  return(out)
}


printVarFreqfromTable <- function(tbl) {
  if (is.null(tbl) || any(dim(tbl) < 1)) {
    return(NULL)
  }
  r <- pasteComma(paste0(names(tbl), "[", tbl, "]"))
  return(r)
}

GenderIncludedInAnalysis <- function(x, sexCol = "Sex") {
  r <- if (!sexCol %in% colnames(x)) {
    paste0(sexCol, " does not included in the input data")
  } else if (nlevels(x[, sexCol]) > 1) {
    paste0("Both sexes included; ", printVarFreqfromTable(table(x$Sex)))
  } else {
    paste0(
      "Only one sex included in the analysis; ",
      printVarFreqfromTable(table(x$Sex))
    )
  }
  return(r)
}

# Test engine
ctest <- function(x,
                  formula = NULL,
                  asset = NULL,
                  rep = 1500,
                  ci_levels = 0.95,
                  RRextraResults = NULL,
                  overallTableName = "Complete table",
                  InterLevelComparisions = TRUE,
                  ...) {
  xtb <- xtabs(
    formula = formula,
    data = x,
    drop.unused.levels = TRUE,
    na.action = "na.omit"
  )

  checkRes <- checkTableForFisherTest(
    xtb = xtb,
    asset = asset,
    check = c(1, 0)
  )
  checkResZeroVariation <- checkTableForFisherTest(
    xtb = xtb,
    asset = asset,
    check = c(0, 1)
  )
  if (!checkRes$passed) {
    r <- setNames(
      list(overall = list(
        p.value = NULL,
        effect = NULL
      )),
      overallTableName
    )
  } else {
    if (!checkResZeroVariation$passed || any(dim(xtb) < 2)) {
      r <- setNames(
        list(overall = list(
          p.value = 1,
          effect = NULL
        )),
        overallTableName
      )
    } else {
      r <- fisher.test1(
        x           = xtb,
        formula     = formula,
        ci_levels   = ci_levels,
        simulate.p.value = rep > 0,
        conf.int    = TRUE,
        conf.level  = ci_levels,
        B           = rep,
        overallTableName = overallTableName,
        InterLevelComparisions = InterLevelComparisions,
        ...
      )
    }
  }
  return(
    list(
      result = r,
      note = c(checkRes$message, checkResZeroVariation$message),
      table = xtb,
      input = x,
      formula = formula,
      RRextra = RRextraResults
    )
  )
}

# check table for fisher.test
checkTableForFisherTest <- function(xtb,
                                    asset = NULL,
                                    check = c(1, 0)) {
  message <- NULL
  if (!is.null(asset)) {
    if (asset <= dim(xtb)[3]) {
      xtb <- xtb[, , asset]
    } else {
      message <- c(message, "There are some empty levels in data")
      return(list(
        passed = FALSE,
        note = message
      ))
    }
  }
  if (check[1] &&
    (length(dim0(xtb)) < 2 ||
      (sum(margin.table(xtb, margin = 2) > 0) < 2 &&
        sum(margin.table(xtb, margin = 1) > 0) < 2))) {
    message <- c(
      message,
      "Contingency table with one level only or sum of margins less than 2"
    )
    return(list(
      passed = FALSE,
      note = message
    ))
  }

  if (check[2] &&
    sum(colSums(xtb) > 0) < 2) {
    message <- c(
      message,
      "Contingency table with one non-zero level"
    )
    return(list(
      passed = FALSE,
      note = message
    ))
  }

  return(list(
    passed = TRUE,
    note = message
  ))
}

# Bulletproof fisher.test
fisher.test0 <- function(x, formula, ci_levels, ...) {
  r <- tryCatch(
    do.call(fisher.test, listFun(
      list = list(x = x, workspace = 2e8, ...),
      FUN = fisher.test
    )),
    error = function(e) {
      message0(e, breakLine = FALSE)
      return(NULL)
    },
    warning = function(w) {
      message0(w, breakLine = FALSE)
      return(NULL)
    }
  )
  r <- intervalsCat(r, ci_levels)
  r$effect <- cat.eff.size(x,
    varName = pasteComma(all_vars0(formula)[-1], truncate = FALSE),
    formula = formula
  )
  r$formula <- formula
  r$table <- x
  return(r)
}

# Fisher test with broken table
fisher.test1 <- function(x,
                         formula,
                         ci_levels,
                         overallTableName = "Complete table",
                         InterLevelComparisions = TRUE,
                         ...) {
  if (is.null(x)) {
    return(NULL)
  }

  nrx <- nrow(x)
  outList <- NULL
  if (InterLevelComparisions && nrx > 2) {
    message0(
      "\t\t testing sub tables in progress ...\n\t\t\t Total tests: ",
      ncombn(n = nrx, x = 2:nrx),
      "; ",
      pasteComma(names(attributes(x)$dimnames))
    )
    for (i in 2:nrx) {
      cbn <- combn(nrx, i)
      subtbl <- lapply(seq_len(ncol(cbn)), function(j) {
        r <- suppressMessages(fisher.test0(
          x = x[cbn[, j], ],
          formula = formula,
          ci_levels = ci_levels,
          ...
        ))
        if (nrow(cbn[, j, drop = FALSE]) == nrow(x)) {
          # this name is used in more places!
          r$data.name <- overallTableName
        } else {
          r$data.name <- paste(rownames(x[cbn[, j], ]), sep = ".", collapse = ".")
        }
        return(r)
      })

      outList <- c(outList, setNames(object = subtbl, lapply(subtbl, function(x) {
        x$data.name
      })))
    }
  } else {
    outList <- setNames(list(
      overall = fisher.test0(
        x         = x,
        formula   = formula,
        ci_levels = ci_levels,
        ...
      )
    ), overallTableName)
  }
  return(outList)
}

ncombn <- function(n, x, total = TRUE) {
  r <- lfactorial(n) - (lfactorial(x) + lfactorial(n - x))
  if (total) {
    return(sum(exp(r)))
  } else {
    return(exp(r))
  }
}


# Change with super extra care
# This is a complicated function for modeling all variation of the variables
AllTables <- function(dframe = NULL,
                      # dataframe
                      vars = NULL,
                      # list of categorical variables
                      cl = 0,
                      # lock the number of columns: works only if shrinke = TRUE
                      response.name = NULL,
                      # response name in the beginning of each variable name [only]
                      cols = NULL,
                      # filter on the columns of interest : works only if shrinke = TRUE
                      shrink = FALSE,
                      # Dichotomiing the final tables
                      Dichotomise = TRUE,
                      # This parameter is added for the MM! framework, adj = 0
                      adj = 1) {
  # remove no variation levels (columns)
  if (is.null(dframe)) {
    message0("Null data frame ")
    return(NULL)
  }

  cat <- vars
  lcat <- length(cat)
  # Make all tables
  l2 <- list()
  message0("\tSplitting in progress ...")
  for (i in unique(pmax(1, 1:(lcat - adj)))) {
    cb <- combn(cat, i)
    for (j in seq_len(ncol(cb))) {
      message0("\tSpliting on ", pasteComma(cb[, j], replaceNull = FALSE), " ...")
      out <- split(dframe,
        interaction(dframe[cb[, j]]),
        drop = TRUE
      )
      l2 <- c(l2, out)
    }
  }
  # Remove fixed value columns
  if (shrink) {
    message0("\tShrinking in progress ...")
    l2 <- lapply(l2, function(x) {
      # remove fixed value columns
      NonZeroFreq <- c(apply(x, 2, function(xx) {
        length(unique(na.omit(xx))) > 1
      }))
      NonZeroFreq [names(NonZeroFreq) %in% c("Freq", response.name)] <- TRUE
      r <- x[, NonZeroFreq, drop = FALSE]
      return(r)
    })
  }

  if (!is.null(cols)) {
    message0("\tKeeping variables of interest ...")
    l2 <- l2[as.logical(lapply(
      # keep certain columns
      l2,
      FUN = function(x) {
        all(cols %in% colnames(x))
      }
    ))]
  }

  # You do not want to get split on all combinations!
  if (all(cl > 0)) {
    # Fixed number of columns in each element of the list
    l2 <- l2[which(lapply(
      l2,
      FUN = function(x) {
        ncol(x) %in% cl
      }
    ) == TRUE)]
  }

  if (Dichotomise) {
    # Split the big tables into 2x2 tables
    message0("\tDichotomising the final tables ...")
    oblCols <- c(response.name, "Freq")
    l3 <- lapply(
      names(l2),
      FUN = function(z) {
        x <- l2[[z]]
        r <- list()
        nl <- names(x)[!names(x) %in% oblCols]
        if (length(nl) > 1) {
          cmbn <- combn(nl, length(nl) - 1)
          for (i in seq_len(ncol(cmbn))) {
            r[[i]] <- lapply(i, function(y) {
              x[, -which(names(x) %in% cmbn[, y]), drop = FALSE]
            })
            names(r[[i]]) <- paste(z, paste0(cmbn[, i], collapse = "...."), sep = "....")
          }
          return(unlist(r, recursive = FALSE))
        } else {
          return(x)
        }
      }
    )
    names(l3) <- names(l2)
    # Which sublists are sublevels?
    message0("\tFinalising the tables ....")
    k <- unlist(lapply(l3, function(x) {
      all(vapply(x, is.list, is.logical(1)))
    }), recursive = FALSE)
    f <- function(l) {
      names(l) <- NULL
      r <- unlist(l, recursive = FALSE, use.names = TRUE)
      return(r)
    }
    if (any(k)) {
      l3 <- c(l3[!k], f(l3[k]))
    }
  } else {
    l3 <- l2
  }
  return(l3)
}


FormulaHasIntercept <- function(formula) {
  if (is.null(formula)) {
    return(NULL)
  }
  attr(terms(as.formula(formula)), which = "intercept") > 0
}

FormulaHasResponse <- function(formula) {
  if (is.null(formula)) {
    return(NULL)
  }
  attr(terms(as.formula(formula)), which = "response") > 0
}
getResponseFromFormula <- function(formula) {
  if (is.null(formula)) {
    return(NULL)
  }
  if (attr(terms(as.formula(formula)), which = "response")) {
    all_vars0(formula)[1]
  } else {
    NULL
  }
}


formulaTerms <- function(formula,
                         response = FALSE,
                         intercept = FALSE) {
  if (!is.null(formula)) {
    r <- c(
      if (response && FormulaHasResponse(formula)) {
        getResponseFromFormula(formula)
      } else {
        NULL
      },
      attr(terms(as.formula(formula)), which = "term.labels"),
      if (intercept &&
        FormulaHasIntercept(formula)) {
        1
      } else {
        NULL
      }
    )
  }
  else {
    r <- NULL
  }
  return(r)
}

expand.formula <- function(formula) {
  reformulate(
    termlabels = labels(terms(formula)),
    response =
      if (attr(terms(formula), "response") > 0) {
        formula[[2]]
      } else {
        NULL
      }
  )
}

UnlistCall <- function(x) {
  as(unlist(x), "character")
}

ListOperation <- function(x, FUN = NULL) {
  cnames <- names(x)
  if (is.null(cnames)) {
    return(x)
  }
  x1 <- lapply(cnames, function(y) {
    ListOperation(x[[y]])
  })
  x1 <- FUN(x1)

  return(x1)
}

# You may want to use list.clean from rlist package
prunelist <- function(x) {
  message0("Pruning list in progress ...")
  r <- lapply(x, function(y) {
    if (is.null(y) || length(y) < 1) {
      NULL
    } else {
      y
    }
  })
  return(r)
}


ModelInReference <- function(model,
                             reference,
                             responseIncluded = FALSE,
                             veryLower = ~ Genotype + 1) {
  mo <- formulaTerms(formula = model, intercept = TRUE)
  re <- formulaTerms(formula = reference, intercept = TRUE)
  r <- re[re %in% mo]
  if (length(r) > 0) {
    out <- reformulate(
      termlabels = r,
      response = if (responseIncluded && FormulaHasResponse(model)) {
        all_vars0(model)[1]
      } else {
        NULL
      },
      intercept = TRUE
    )
    if (length(mo[!(mo %in% re)]) > 0) {
      message0(
        'Some terms in the "lower" model are ignored. See:\n\t',
        pasteComma(mo[!(mo %in% re)])
      )
      message0('The polished "lower": ', printformula(out))
    }
  } else {
    message0('An invalid "lower". It is set to: ', printformula(veryLower))
    out <- veryLower
  }
  return(out)
}

FERR_FullComparisionsMessage <- function(x) {
  message0("Optimisation level: ")
  message0("\tEstimation of all factor combination effects = ", x[1])
  message0("\tEstimation of inter level factors for the response = ", x[2])
}

TermInFormulaReturn <- function(formula,
                                term,
                                return,
                                active = TRUE,
                                not = NA,
                                debug = TRUE) {
  terms <- formulaTerms(formula = formula)
  if (debug) {
    message0(printformula(terms))
  }
  if (active && any(term %in% terms)) {
    return(return)
  } else {
    return(not)
  }
}

paste01 <- function(...) {
  r <- paste0(...)
  while (any(grepl(pattern = "  ", x = r))) {
    r <- gsub(
      pattern = "  ",
      x = r,
      replacement = " ",
      fixed = TRUE
    )
  }
  return(r)
}

greplM <- function(x = NULL, pattern = NULL, ...) {
  if (is.null(x)) {
    return(NULL)
  }
  if (is.null(pattern)) {
    return(x)
  }

  r <- rep(TRUE, length(x))
  for (p in pattern) {
    r <- r & grepl(pattern = p, x = x, ...)
  }
  return(r)
}

modelContrasts <- function(formula, data, ...) {
  if (is.null(formula) || is.null(data)) {
    return(NULL)
  }
  r <- colnames(model.matrix(formula, data, ...))
  return(r)
}

multiBatch <- function(data) {
  if ("Batch" %in% colnames(data)) {
    batchColumn <- na.omit(data[, "Batch"])
    if (length(levels(batchColumn)) > 1) {
      TRUE
    } else {
      FALSE
    }
  }
  else {
    FALSE
  }
}

unmatrix0 <- function(x, byrow = FALSE, sep = " ") {
  if (is.null(x)) {
    return(NULL)
  }

  rnames <- rownames(x)
  cnames <- colnames(x)
  if (is.null(rnames)) {
    rnames <- paste("r", seq_len(nrow(x)), sep = "")
  }
  if (is.null(cnames)) {
    cnames <- paste("c", seq_len(ncol(x)), sep = "")
  }
  nmat <- outer(rnames, cnames, paste, sep = sep)
  if (byrow) {
    vlist <- c(t(x))
    names(vlist) <- c(t(nmat))
  }
  else {
    vlist <- c(x)
    names(vlist) <- c(nmat)
  }
  return(vlist)
}

MoveResponseToRightOfTheFormula <- function(formula) {
  if (is.null(formula)) {
    message0("Ops! the formula is blank")
    return(NULL)
  }
  newFormula <- update.formula(
    old = formula,
    new = reformulate(
      response = NULL,
      termlabels = c(all_vars0(formula)[1], ".")
    )
  )
  out <- formula(delete.response(terms(newFormula)))
  message0("The input formula: ", printformula(formula))
  message0(
    "The reformatted formula for the algorithm: ",
    printformula(out)
  )
  return(out)
}

renameVariableNameInList <- function(list,
                                     name,
                                     replace = NULL,
                                     prefix,
                                     not = FALSE) {
  if (is.null(list)) {
    return(NULL)
  }

  if (is.null(replace)) {
    if (!not) {
      names(list)[names(list) %in% name] <- paste(prefix, names(list)[names(list) %in% name], sep = "_")
    } else {
      names(list)[!names(list) %in% name] <- paste(prefix, names(list)[!names(list) %in% name], sep = "_")
    }
  } else
  if (!not) {
    names(list)[names(list) %in% name] <- replace
  } else {
    names(list)[!names(list) %in% name] <- replace
  }

  return(list)
}

decimalplaces <- function(x) {
  if ((x %% 1) != 0) {
    nchar(strsplit(sub("0+$", "", as.character(x)), ".", fixed = TRUE)[[1]][[2]])
  } else {
    return(0)
  }
}

names0 <- function(x) {
  r <- if (is.null(x)) {
    NULL
  } else {
    names(x)
  }
  return(r)
}

FormulaDataColNames <- function(formula = NULL, data = NULL) {
  r <- if (is.null(formula)) {
    names0(data)
  } else {
    all_vars0(formula)
  }
  return(r)
}

dataSignature <- function(formula = '.', data, digits = 10) {

  a.vars <- FormulaDataColNames(formula = formula, data = data)

  if (!is.null(formula) &&
    !is.null(data) &&
    !is.null(a.vars) &&
    nrow(data) > 1 &&
    sum(a.vars %in% names(data))) {
    v.vars <- a.vars[a.vars %in% names(data)]
    res0 <- lapply(v.vars, function(name) {
      d <- data[, name]
      if (is.numeric(d)) {
        paste0(
          name,
          ":[",
          pasteComma(
            paste0("n=", length(d)),
            paste0("mean=", round(mean(d, na.rm = TRUE), digits)),
            paste0("sd=", round(sd0(d, na.rm = TRUE), digits)),
            truncate      = FALSE,
            trailingSpace = FALSE
          ),
          "]"
        )
      } else {
        if (length(d) > 0 &&
            all(is.na(d)))
          d = rep('AllNa', length(d))
        d = as.factor(d)
        paste0(name,
               ":[",
               pasteComma(
                 paste0(levels(d), "=", table(d)),
                 truncate           = FALSE,
                 trailingSpace      = FALSE
               ),
               "]")

      }
    })

    overall <- mean(rowMeans(apply(data[, v.vars, drop = FALSE], 2, function(x) {
      r <- if (!is.numeric(x)) {
        as.integer(as.factor(x))
      } else {
        x
      }
      return(r)
    }), na.rm = TRUE))

    res0$overall <- paste0("Overall:[", overall, "]")
    res0$precision <- paste0("Precision:[", digits, "]")
    res <- pasteComma(
      sort(unlist(res0), decreasing = FALSE),
      truncate      = FALSE,
      trailingSpace = FALSE,
      sep = '|'
    )
  } else {
    res <- paste0(
      "Something is wrong with the data/model. Make sure that the data is not null and the formula matches the data. [This is a random number ",
      randRegSeed(
        n = 1,
        decimal = TRUE,
        round = 10
      ),
      "]"
    )
  }
  return(res)
}

randRegSeed <- function(n = 1,
                        max = .Machine$double.xmax,
                        decimal = TRUE,
                        round = 10) {
  r <- runif(n, 1, as.numeric(Sys.time()) * 10000) %% max
  if (decimal) {
    r <- r - (r %% 1)
  }
  r <- round(r, digits = round)
  return(r)
}

as.numeric01 <- function(x) {
  if (!is.null(x)) {
    return(suppressWarnings(as.numeric(x)))
  } else {
    return(NULL)
  }
}

OpenStatsListLevels <- function(object, sep = "") {
  if (is.null(object)) {
    return(NULL)
  }
  l <- NULL
  SexLab <- "Sex"
  FemaleLab <- ifelse(
    is.na(object$input$OpenStatsList@dataset.values.female),
    "Female",
    object$input$OpenStatsList@dataset.values.female
  )
  MaleLab <- ifelse(
    is.na(object$input$OpenStatsList@dataset.values.male),
    "Male",
    object$input$OpenStatsList@dataset.values.male
  )
  SexLevels <- as.list(paste(SexLab, sort(c(
    FemaleLab, MaleLab
  ), decreasing = FALSE),
  sep = sep
  ))
  names(SexLevels) <- unlist(SexLevels)
  ##########
  GenotypeLab <- "Genotype"
  ControlLab <- ifelse(
    is.na(object$input$OpenStatsList@refGenotype),
    "control",
    object$input$OpenStatsList@refGenotype
  )
  MutantLab <- ifelse(
    is.na(object$input$OpenStatsList@testGenotype),
    "experimental",
    object$input$OpenStatsList@testGenotype
  )
  GenotypeLevels <- as.list(paste(GenotypeLab, sort(c(
    ControlLab, MutantLab
  ), decreasing = TRUE),
  sep = sep
  ))
  names(GenotypeLevels) <- unlist(GenotypeLevels)

  ##########
  BatchLab <- "Batch"
  ##########
  WeightLab <- "Weight"
  ##########
  l <- list(
    response = object$input$depVariable,
    LifeStage = list(
      LifeStage = "LifeStage",
      Early = "Early",
      Late = "Late",
      Levels = list(LifeStageEarly = "LifeStageEarly", LifeStageLate = "LifeStageLate")
    ),
    Sex = list(
      Sex = SexLab,
      Female = FemaleLab,
      Male = MaleLab,
      Levels = as.list(SexLevels)
    ),
    Genotype = list(
      Genotype = GenotypeLab,
      Control = ControlLab,
      Mutant = MutantLab,
      Levels = as.list(GenotypeLevels)
    ),
    Batch = BatchLab,
    Weight = WeightLab
  )
  return(l)
}

pasteCollon <- function(x) {
  r <- paste(x, collapse = ":", sep = ":")
  return(r)
}

# Modified from permutations in gtools package
permn <- function(n, r, v = seq_len(n), set = TRUE, repeats.allowed = FALSE) {
  if (mode(n) != "numeric" || length(n) != 1 || n < 1 ||
    (n %% 1) != 0) {
    stop("bad value of n")
  }
  if (mode(r) != "numeric" || length(r) != 1 || r < 1 ||
    (r %% 1) != 0) {
    stop("bad value of r")
  }
  if (!is.atomic(v) || length(v) < n) {
    stop("v is either non-atomic or too short")
  }
  if ((r > n) & repeats.allowed == FALSE) {
    stop("r > n and repeats.allowed=FALSE")
  }
  if (set) {
    v <- unique(sort(v))
    if (length(v) < n) {
      stop("too few different elements")
    }
  }
  # v0 <- vector(mode(v), 0)
  if (repeats.allowed) {
    sub <- function(n, r, v) {
      if (r == 1) {
        matrix(v, n, 1)
      } else if (n == 1) {
        matrix(v, 1, r)
      } else {
        inner <- Recall(n, r - 1, v)
        cbind(rep(v, rep(nrow(inner), n)), matrix(t(inner),
          ncol = ncol(inner), nrow = nrow(inner) * n,
          byrow = TRUE
        ))
      }
    }
  } else {
    sub <- function(n, r, v) {
      if (r == 1) {
        matrix(v, n, 1)
      } else if (n == 1) {
        matrix(v, 1, r)
      } else {
        X <- NULL
        for (i in seq_len(n)) {
          X <- rbind(X, cbind(v[i], Recall(n -
            1, r - 1, v[-i])))
        }
        X
      }
    }
  }
  sub(n, r, v[seq_len(n)])
}
CombineLevels <- function(...,
                          debug = TRUE,
                          len = 2) {
  x <- c(...)
  if (length(x) < 1) {
    return(x)
  }
  pm <- t(permn(n = length(x), r = len))
  r <- lapply(seq_len(ncol(pm)), function(i) {
    xx <- pm[, i]
    nxx <- length(xx)
    if (nxx < 1) {
      return(NULL)
    }
    r <- c(pasteCollon(x[xx]))
  })
  r <- as.vector(unlist(r))
  if (debug) {
    print(r)
  }
  return(r)
}

NullOrValue <- function(x, ReplaveValue = 10) {
  if (is.null(x)) {
    x <- ReplaveValue
  }
  return(x)
}

RRNewObjectAndFormula <- function(object,
                                  RRprop,
                                  formula,
                                  labels = NULL,
                                  depVarPrefix = NULL,
                                  refLevel = NULL,
                                  ### see right in the cut function
                                  right = TRUE) {
  allTerms <- all_vars0(formula)
  newobject <- object
  RRcutObject <- RRCut(
    object = object,
    prob = RRprop,
    depVariable = allTerms[1],
    labels = labels,
    depVarPrefix = depVarPrefix,
    right = right,
    refLevel = refLevel,
    lower = allTerms[2]
  )
  if (is.null(RRcutObject)) {
    return(NULL)
  }

  newobject <- RRcutObject$discObject
  newFormula <- replaceElementInFormula(
    formula = formula,
    pattern = allTerms[1],
    replace = RRcutObject$newdepVariable
  )
  return(
    list(
      newobject = newobject,
      newFormula = newFormula,
      newDepVariable = RRcutObject$newdepVariable,
      object = object,
      formula = formula,
      depVariable = allTerms[1],
      ###
      RRprop = RRprop,
      labels = labels,
      depVarPrefix = depVarPrefix,
      refLevel = RRcutObject$refLevel,
      empiricalQuantiles = RRcutObject$percentages
    )
  )
}

jitter0 <- function(x,
                    factor = 1,
                    amount = NULL,
                    upper = 1,
                    lower = .5,
                    maxtry = 1500) {
  for (i in seq_len(maxtry)) {
    if (i >= maxtry) {
      message0("\tNo solusion found for the specified RR_prop.")
    }
    xx <- jitter(
      x = x,
      amount = amount,
      factor = factor
    )
    if (min(xx, na.rm = TRUE) > lower && max(xx, na.rm = TRUE) < upper) {
      break
    }
  }
  return(xx)
}

addJitterToTheEntireData <- function(x, min = -1, max = 0) {
  if (is.null(x) || length(na.omit(x)) < 1) {
    return(x)
  }
  lx <- length(x)
  jitter <- sort(runif(n = lx, min = min, max = max), decreasing = FALSE)
  message0(
    "A small jitter (max value = ",
    min(jitter, na.rm = TRUE) -
      max(jitter, na.rm = TRUE),
    ") is added to the data"
  )
  o <- order(x)
  x <- x + jitter[o]
  return(x)
}

ExpandTails <- function(x,
                        amount,
                        upper = TRUE,
                        lower = TRUE) {
  xx <- na.omit(x)
  if (is.null(x) ||
    is.null(xx) ||
    length(xx) < 1) {
    return(x)
  }
  if (upper) {
    x[x == max(xx, na.rm = TRUE)] <- max(xx, na.rm = TRUE) + amount
  }
  if (lower) {
    x[x == min(xx, na.rm = TRUE)] <- min(xx, na.rm = TRUE) - amount
  }
  return(x)
}

ReplaceTails <- function(x,
                         lower = 0,
                         upper = 0,
                         add = FALSE) {
  xx <- na.omit(x)
  if (is.null(x) ||
    is.null(xx) ||
    length(xx) < 1) {
    return(x)
  }
  if (!add) {
    if (upper) {
      x[which.max(x)] <- upper[1]
    }
    if (lower) {
      x[which.min(x)] <- lower[1]
    }
  } else {
    x <- c(lower, x, upper)
  }
  return(sort(unname(x)))
}

CheckTheValidityOfTheRRLower <- function(lower, data, depvar, minLevels = 2) {
  if (is.null(data) || is.null(lower)) {
    stop("~> Null data or the `Reference variable`. Please check the input data or the `Reference variable`")
  }
  if (is.null(depvar) || !depvar %in% names(data)) {
    stop("~> dependent variable does not exist in the data")
  }
  if (!is.numeric(data[, depvar])) {
    stop("~> dependent variable must be numeric")
  }
  if (is.null(lower) || !lower %in% names(data)) {
    stop("~> `Reference variable` does not exist in the data")
  }
  if (is.numeric(data[, lower])) {
    stop("~> `Reference variable` must be a factor")
  }
  if (nlevels(as.factor(data[, lower])) < minLevels) {
    stop("~> `Reference variable` must have at least two levels")
  }
  return(TRUE)
}

RRGetTheLeveLWithMaxFrequency <- function(data, lower) {
  tbl <- table(data[, lower])
  maxTbl <- tbl %in% max(tbl, na.rm = TRUE)[1]
  r <- names(tbl[maxTbl])
  if (length(r) > 1) {
    message0(
      "\tMore than one variable with the highest frequency detected. See:\n\t Level(frequency): ",
      pasteComma(paste0(r, "(", tbl[maxTbl], ")"), truncate = FALSE),
      "\n\t\t The first one (`",
      r[1],
      "`) would be used."
    )
  } else {
    message0("\t\tNominated level(frequency) = ", pasteComma(paste0(r, "(", tbl[maxTbl], ")")))
  }
  return(r[1])
}

ExtractDatasetPLIfPossible <- function(x) {
  if (class(x) %in% c("PhenList", "OpenStatsList")) {
    x <- x@datasetPL
  }
  return(x)
}

RRCut <- function(object,
                  prob = .95,
                  depVariable = "data_point",
                  labels = NULL,
                  depVarPrefix = NULL,
                  right = TRUE,
                  refLevel = NULL,
                  lower = "Genotype",
                  decimal = 8) {
  data <- object
  if (class(data) %in% c("PhenList", "OpenStatsList")) {
    refLevel <- data@refGenotype
    data <- data@datasetPL
  }
  if (!CheckTheValidityOfTheRRLower(lower = lower, data = data, depvar = depVariable)) {
    return(NULL)
  }
  if (prob == .5) {
    message0("\t`prop` must be different from 0.5")
    return(NULL)
  }
  if (is.null(refLevel)) {
    message0("\tReference level left blank, then the dominate level will be set as the reference level")
    refLevel <- RRGetTheLeveLWithMaxFrequency(data = data, lower = lower)
  } else {
    message0("Reference level is set to `", refLevel, "`")
  }
  # Preparation ...
  JitterPrecision <- 4 + 1 * decimalplaces(min(data[, depVariable], na.rm = TRUE))
  data$data_point_discretised <- NA
  controls <- subset(
    data,
    data[, lower] %in% refLevel
  )
  mutants <- subset(
    data,
    !(data[, lower] %in% refLevel)
  )
  prb <- unique(c(0, prob, 1))
  qntl <- ReplaceTails(
    x = quantile(
      x = controls[, depVariable],
      probs = prb,
      na.rm = TRUE
    ),
    upper = max(data[, depVariable], na.rm = TRUE)[1] + 1,
    lower = min(data[, depVariable], na.rm = TRUE)[1] - 1,
    add = FALSE
  )
  if (sum(duplicated(qntl))) {
    message0(
      "\t* duplicates in quantiles detected, then small ",
      "(precision = 4 + minimum data precision) ",
      "jitters will be added to quantiles.\n\t\tQauntiles: ",
      pasteComma(round(qntl, 5), replaceNull = FALSE)
    )
    message0("\tJitter max precision (decimals) = ", JitterPrecision)
    qntl[duplicated(qntl)] <- jitter0(
      x = qntl[duplicated(qntl)],
      amount = 10^-JitterPrecision,
      upper = 1,
      lower = 0.5
    )
    qntl <- sort(qntl)
  }
  message0(
    "\tInitial quantiles for cutting the data \n",
    "\t\t\t Probs: ",
    pasteComma(round(prb, 3)),
    "\n\t\t\t N.reference: ",
    length(controls[, depVariable]),
    "\n\t\t\t Quantiles: ",
    pasteComma(round(qntl, 3), replaceNull = FALSE)
  )
  if (length(unique(qntl)) < 2) {
    message0("\tThe algorithm cannot specify non-unique quantiles.")
    return(NULL)
  }
  controls$data_point_discretised <- cut(
    x = controls[, depVariable],
    breaks = qntl,
    labels = if (is.null(labels)) {
      FALSE
    } else {
      labels
    },
    include.lowest = TRUE,
    right = right
  )
  ###
  tbc <- prop.table(table(controls$data_point_discretised))
  tbpc <- setNames(as.list(tbc), names(tbc))
  message0(
    "\t Detected percentiles in the data (",
    decimal,
    " decimals): ",
    pasteComma(paste(names(tbc), "=", round(tbc, 8)))
  )
  ###
  mutants$data_point_discretised <- cut(
    x = mutants [, depVariable],
    breaks = qntl,
    labels = if (is.null(labels)) {
      FALSE
    } else {
      labels
    },
    include.lowest = TRUE,
    right = right
  )
  newObj <- rbind(mutants, controls)
  newdepVariable <- pasteUnderscore(c(depVarPrefix, depVariable, "discretised"))
  names(newObj)[names(newObj) %in% "data_point_discretised"] <- newdepVariable
  newObj[, newdepVariable] <- as.factor(newObj[, newdepVariable])
  # message0('\tA new column is added to the data object: ', newdepVariable)
  return(
    list(
      object = object,
      discObject = newObj,
      newdepVariable = newdepVariable,
      depVariable = depVariable,
      percentages = tbpc,
      refLevel = refLevel,
      lower = lower
    )
  )
}

RRDiscretizedEngine <- function(data,
                                formula = data_point ~ Genotype + Sex + zygosity,
                                depVar = "data_point",
                                lower = "Genotype",
                                refLevel = NULL,
                                labels = c("Low", "NormalHigh"),
                                depVarPrefix = "Low",
                                right = TRUE,
                                prob = .95) {
  requireNamespace("rlist")
  l1 <- l2 <- l3 <- l4 <- NULL
  if (!CheckTheValidityOfTheRRLower(
    lower = lower,
    depvar = depVar,
    data = data
  )) {
    return(NULL)
  }
  vars <- names(data) %in% all.vars(formula)
  df <- data[, vars, drop = FALSE]
  df <- trimColsInDf(df = df)
  cat <- !is.continuous(df[, all.vars(formula), drop = FALSE])
  extra <- all.vars(formula)[cat &
    !all.vars(formula) %in% c(depVar, lower)]
  lextra <- length(extra)
  message0("Preparing the reference ranges ...")
  message0("Preparing the data for the variable: ", lower)

  l1 <- RRNewObjectAndFormula(
    object = data,
    RRprop = prob,
    formula = formula,
    labels = labels,
    depVarPrefix = depVarPrefix,
    refLevel = refLevel,
    right = right
  )

  if (lextra > 0) {
    for (i in seq_len(lextra)) {
      cbn <- combn(extra, i)
      for (j in seq_len(ncol(cbn))) {
        message0("\tSpliting on ", pasteComma(cbn[, j], replaceNull = FALSE), " ...")
        out <- split(df,
          interaction(df[cbn[, j]]),
          drop = TRUE
        )
        l2 <- c(l2, out)
      }
    }
  }
  if (!is.null(l2)) {
    l3 <- lapply(names(l2), function(name) {
      message0("Preparing the data for the combined effect: ", name)
      x <- l2[[name]]
      out <- RRNewObjectAndFormula(
        object = x,
        RRprop = prob,
        formula = formula,
        labels = labels,
        depVarPrefix = depVarPrefix,
        refLevel = refLevel,
        right = right
      )
    })
    names(l3) <- names(l2)
  }
  l4 <- c(list(l1), l3)
  #### must improve in future
  if (!is.null(l4)) {
    names(l4) <- ifelse(
      nzchar(names(l4)),
      paste(depVar, lower, names(l4), sep = "."),
      paste(depVar, lower, sep = ".")
    )
  }
  l4 <- list.clean(l4)
  return(l4)
}

RRextra <- function(object,
                    prob = .95,
                    depVariable = "data_point") {
  if (prob <= .5) {
    message0('"prob" must be greater than 0.5')
    return(NULL)
  }
  # Preparation ...
  controls <- subset(
    object@datasetPL,
    object@datasetPL$Genotype %in% object@refGenotype
  )
  mutants <- subset(
    object@datasetPL,
    object@datasetPL$Genotype %in% object@testGenotype
  )
  prb <- unique(c(0, 1 - prob, prob, 1))
  qntl <- quantile(x = controls[, depVariable], probs = prb)
  cutsC <- cut(x = controls[, depVariable], breaks = qntl)

  message0("Creating control cuts ...")
  XclassValue <- tapply(controls[, depVariable], cutsC, function(x) {
    (x)
  })
  message0("Creating mutant cuts ...")
  MclassValue <- lapply(
    XclassValue,
    FUN = function(xx) {
      sum(mutants$data_point %in% xx)
    }
  )
  CclassValue <- lapply(XclassValue, length)
  message0("Creating output tables ...")
  # Overall Table
  tbl <- rbind(unlist(CclassValue), unlist(MclassValue))
  dimnames(tbl) <- list(c("Control", "Mutant"), c("Low", "Normal", "High"))
  # Table Low
  tblLow <- cbind(tbl[, 1], rowSums(tbl[, 2:3]))
  dimnames(tblLow) <- list(c("Control", "Mutant"), c("Low", "Normal/High"))

  tblHigh <- cbind(tbl[, 1], rowSums(tbl[, seq_len(2)]))
  dimnames(tblHigh) <- list(c("Control", "Mutant"), c("Low/Normal", "High"))

  return(list(
    overall = tbl,
    tblLow = tblLow,
    tblHigh = tblHigh
  ))
}

TermInModelAndnLevels <- function(model,
                                  term = "LifeStage",
                                  data,
                                  threshold = 1) {
  if (is.null(model) ||
    is.null(data) || is.null(term) || !(term %in% colnames(data))) {
    return(FALSE)
  }
  # if (!is.null(model$correctd))
  # 	model      = model$correctd
  r <- termInTheModel(
    model = model,
    term = term,
    message = FALSE
  ) &&
    colLevelsSimple(data, all_vars0(model)[1]) > threshold
  return(r)
}
#######################
# From PhenStat
columnChecks0 <- function(dataset,
                          columnName,
                          dataPointsThreshold = 4) {
  presence <- TRUE
  numeric <- FALSE
  levelsCheck <- 0
  variabilityThreshold <- 10
  # Test: dependent variable presence
  if (!(columnName %in% colnames(dataset))) {
    presence <- FALSE
  }
  else {
    columnOfInterest <- na.omit(dataset[, c(columnName), drop = FALSE])

    if (all(is.continuous(columnOfInterest))) {
      numeric <- TRUE
    }

    dataPointsSummary <- columnLevels(dataset, columnName)

    NoCombinations <- dataPointsSummary[3]
    variabilityThreshold <- NoCombinations
    for (i in seq_len(NoCombinations)) {
      if (dataPointsSummary[3 + i] >= dataPointsThreshold) {
        levelsCheck <- levelsCheck + 1
      }
    }
  }

  values <-
    c(presence, numeric, (levelsCheck >= variabilityThreshold))

  return(values)
}

colLevelsSimple <- function(dataset, colName) {
  return(length(unique(dataset[, colName])))
}

columnLevels <- function(dataset, columnName) {
  columnOfInterest <- na.omit(dataset[, c(columnName)])


  values <- c(length(columnOfInterest))

  # Test for the data points quantity for Genotype/sex combinations
  Genotype_levels <- levels(factor(dataset$Genotype))
  Sex_levels <- levels(factor(dataset$Sex))
  values <- append(values, length(levels(factor(columnOfInterest))))

  values <-
    append(values, length(Genotype_levels) * length(Sex_levels))

  for (i in seq_along(Genotype_levels)) {
    GenotypeSubset <-
      subset(dataset, dataset$Genotype == Genotype_levels[i])
    for (j in seq_along(Sex_levels)) {
      GenotypeSexSubset <- subset(
        GenotypeSubset,
        GenotypeSubset$Sex == Sex_levels[j]
      )

      columnOfInterestSubset <-
        na.omit(GenotypeSexSubset[, c(columnName)])

      values <- append(values, length(columnOfInterestSubset))
    }
  }
  return(values)
}

# From  capitalize {Hmisc}
capitalise <- function(string) {
  capped <- grep("^[A-Z]", string, invert = TRUE)
  substr(string[capped], 1, 1) <- toupper(substr(
    string[capped],
    1, 1
  ))
  return(string)
}

sort0 <- function(x, ...) {
  if (length(x) > 0) {
    x <- sort(x = x, ...)
  }
  return(x)
}

message0 <- function(...,
                     breakLine = TRUE,
                     capitalise = TRUE,
                     appendLF = TRUE,
                     active = TRUE) {
  if (active) {
    x <- paste0(..., collapse = "")
    if (breakLine) {
      nmessage <- unlist(strsplit(x = x, split = "\n"))
    } else {
      nmessage <- x
    }
    if (capitalise) {
      nmessage <- capitalise(nmessage)
    }
    message(paste(Sys.time(), nmessage, sep = ". ", collapse = "\n"),
      appendLF = appendLF
    )
  }
}

warning0 <- function(...,
                     breakLine = TRUE,
                     capitalise = TRUE) {
  x <- paste0(..., collapse = "")
  if (breakLine) {
    nmessage <- unlist(strsplit(x = x, split = "\n"))
  } else {
    nmessage <- x
  }
  if (capitalise) {
    nmessage <- capitalise(nmessage)
  }
  warning(paste(Sys.time(), nmessage, sep = ". ", collapse = "\n"))
}


extractFisherSubTableResults <- function(x, what = "p.value") {
  r <- lapply0(x, function(y) {
    y[what]
  })
  return(as.list0(r))
}

lapply0 <- function(X, FUN, ...) {
  if (is.null(X)) {
    return(NULL)
  }
  r <- lapply(X = X, FUN = FUN, ...)
  return(r)
}

all_vars0 <- function(x, ...) {
  if (is.null(x)) {
    return(NULL)
  }
  fif <- all.vars(formula(x), ...)
  if (length(fif) > 0) {
    return(fif)
  } else {
    return(NULL)
  }
}

intervalsCon <- function(object, lvls, ...) {
  if (is.null(object)) {
    return(object)
  }

  message0(
    "\tComputing the confidence intervals at the level of ",
    pasteComma(lvls),
    " ..."
  )
  ci <- lapply(lvls, function(x) {
    citerms <- if (is0(object, "lme")) {
      c("all", "fixed", "var-cov")
    } else if (is0(object, "gls")) {
      c("all", "coef", "var-cov")
    } else {
      c("all")
    }
    for (citerm in citerms) {
      intv <- tryCatch(
        expr = intervals(
          object = object,
          level  = x,
          which  = citerm,
          ...
        ),
        error = function(e) {
          message0(
            "\t  ~> Error in estimating the confidence intervals for `",
            citerm,
            "` term(s)"
          )
          # message0('\t ~> ', e, breakLine = FALSE)
          return(NULL)
        },
        warning = function(w) {
          message0(
            "\t  ~> Error in estimating the confidence intervals for `",
            citerm,
            "` term(s)"
          )
          # message0('\t ~> ', w, breakLine = FALSE)
          return(NULL)
        }
      )
      if (!is.null(intv)) {
        message0("\t CI for `", citerm, "` term(s) successfully estimated")
        break
      } else if (!citerm %in% tail(citerms, 1)) {
        message0("\tAdjustment applied. Retrying ....")
      } else {
        message0("CI estimation failed.")
      }
    }
    if (is.null(intv)) {
      return(NULL)
    } else {
      return(list(intervals = intv, level = x))
    }
  })
  if (!is.null(ci)) {
    names(ci) <- paste("CI_", lvls, sep = "")
  }
  object$intervals <- ci
  return(object)
}



intervalsCat <- function(object, lvls = .95, ...) {
  if (is.null(object)) {
    return(object)
  }

  # message0('\t\tReformatting the confidence interval in the level of ',
  # 				 pasteComma(lvls),
  # 				 ' ...')
  c0 <- object$conf.int
  c2 <- NULL
  if (!is.null(c0)) {
    ci <- list(
      intervals = list(
        lower = c0[1],
        est. = as.vector(object$estimate),
        upper = c0[2]
      ),
      level = attr(c0, "conf.level")
    )
  } else {
    ci <- NULL
  }
  c2$intervals <- ci
  if (!is.null(ci)) {
    names(c2) <- paste("CI_", lvls, sep = "")
  }
  object$interval <- c2
  return(object)
}

expandDottedFormula <- function(formula, data) {
  if (is.null(formula) || is.null(data)) {
    message0("Null formula or data")
    return(formula)
  }

  newformula <- formula(terms.formula(x = formula, data = data))
  message0(
    "Extended formula (if (*.:) characters included):\n\t ",
    printformula(newformula)
  )
  return(newformula)
}

removeSingleLevelFactors <- function(formula, data) {
  cat <- all_vars0(formula)[!is.continuous(data[, all_vars0(formula), drop = FALSE])]
  if (length(cat)) {
    FactsThatMustBeRemoved <- cat[lapply(data[, cat, drop = FALSE], function(x) {
      length(unique(na.omit(x)))
    }) <= 1]
    if (length(FactsThatMustBeRemoved)) {
      message0(
        "The below terms from the model are removed because they only contain one level:\n\t ",
        pasteComma(
          FactsThatMustBeRemoved,
          replaceNull = FALSE,
          truncate = FALSE
        )
      )
      formula <- update.formula(
        formula,
        reformulate0(
          termlabels = c(".", FactsThatMustBeRemoved),
          response = NULL,
          intercept = TRUE,
          sep = "-"
        )
      )
    }
  }
  return(formula)
}

removeSingleValueContinuousVariables <- function(formula, data) {
  cont <- all_vars0(formula)[is.continuous(data[, all_vars0(formula), drop = FALSE])]
  if (length(cont)) {
    VarsThatMustBeRemoved <- cont[lapply(data[, cont, drop = FALSE], function(x) {
      length(unique(na.omit(x)))
    }) <= 1]
    if (length(VarsThatMustBeRemoved)) {
      message0(
        "The below terms from the model are removed because they do not have any variation:\n\t ",
        pasteComma(
          VarsThatMustBeRemoved,
          replaceNull = FALSE,
          truncate    = FALSE
        )
      )
      formula <- update.formula(
        formula,
        reformulate0(
          termlabels = c(".", VarsThatMustBeRemoved),
          response = NULL,
          intercept = TRUE,
          sep = "-"
        )
      )
    }
  }
  return(formula)
}


InteractionAndValue <- function(x, VName = "p-value") {
  r <- list()
  if (!is.null(x)) {
    r[VName] <- x
    r["Criteria"] <- TRUE
  } else {
    r$Criteria <- FALSE
  }
  return(r)
}


modelSummaryPvalueExtract <- function(x,
                                      variable = "Genotype",
                                      anova = TRUE,
                                      what = c("Pr(>|z|)", "Pr(>Chi)", "p-value"),
                                      debug = TRUE,
                                      ci_display = FALSE) {
  if (is.null(x)) {
    return(NULL)
  }
  if (anova) {
    if (any(class(x) %in% "glm")) {
      mOrg <- anova0(x, test = "LRT")
    } else {
      mOrg <- anova0(x, type = "marginal")
    }
  } else {
    mOrg <- coef(summary1(x))
  }
  mOrg <- as.data.frame(mOrg)
  if (debug) {
    print(mOrg)
  }
  mSum <- mOrg[, colnames(mOrg) %in% what, drop = FALSE]
  if (!is.null(variable) && any(variable %in% rownames(mOrg))) {
    mSumFiltered <- mSum[rownames(mOrg) %in% variable, , drop = FALSE]
  } else {
    mSumFiltered <- NULL # NA?
  }
  if (ci_display && !is.null(mSumFiltered)) {
    fixedEffInters <- CheckWhetherNamesExistInListExtractCI(
      x = x$intervals[[1]]$intervals,
      lnames = c("coef", "fixed"),
      variable = variable
    )
    return(list(
      "Value"      = as.vector(unlist(mSumFiltered)),
      "Confidence" =  Matrix2List(x = fixedEffInters),
      "Level"      = ifelse(is.null(fixedEffInters), NULL, x$intervals[[1]]$level)
    ))
  } else {
    return(as.vector(unlist(mSumFiltered)))
  }
}

CheckWhetherNamesExistInListExtractCI <- function(x, lnames, variable, minusCol = 2) {
  if (!is.null(x) && any(names(x) %in% lnames)) {
    Toplst <- x[names(x) %in% lnames][[1]]
    Toplst <- Toplst[rownames(Toplst) %in% variable, -minusCol,
      drop = FALSE
    ]
    return(Toplst)
  } else {
    return(NULL)
  }
}

CatEstimateAndCI <- function(object) {
  if (is.null(object)) {
    return(NULL)
  }
  v <- object$interval[[1]]
  if (!is.null(v)) {
    return(list(
      "Value" = v$intervals$est.,
      "Confidence" = list(
        "Lower" = v$intervals$lower,
        "Upper" = v$intervals$upper
      ),
      "Level" = v$level
    ))
  } else {
    return(list(
      "Value" = "Only available for 2x2 tables",
      "Confidence" = list(
        "Lower" = NULL,
        "Upper" = NULL
      ),
      "Level" = NULL
    ))
  }
}

NormaliseDataFrame <- function(data,
                               colnames = NULL) {
  message0("Normalising the data.frame in progress ...")

  if (!is.null(colnames)) {
    colnames <- colnames[colnames %in% names(data)]

    if (length(colnames) < 1) {
      message0('No variable name found in the data. Please check "colnames" ...')
      return(data)
    }
  } else {
    message0(
      "No variable selected for normalisation. All numerical variables will be normalised."
    )
    colnames <- names(data)
  }
  ######
  data  [, colnames] <- as.data.frame(lapply(
    data[, colnames, drop = FALSE],
    FUN = function(x) {
      if (is.numeric(x) && length(unique(x)) > 1) {
        sdx <- sd0(x, na.rm = TRUE)
        r <- (x - mean(x, na.rm = TRUE)) / ifelse(!is.na(sdx) &&
          sdx > 0, sdx, 1)
      } else {
        r <- x
      }
      return(r)
    }
  ))
  return(data)
}

getlmeObjectConfigs <- function(obj) {
  l <- list(
    "Formula" = printformula(if (class(obj) %in% "lme") {
      obj$call$fixed
    } else {
      obj$call$model
    }, message = FALSE),
    "Random effect" = printformula(obj$call$random, message = FALSE)
  )
  return(l)
}

extractLmeTerms <- function(object) {
  if (is.null(object) || !is.null(object$messages)) {
    return(NULL)
  }
  r <- list(
    "Initial model" = getlmeObjectConfigs(object$output$Initial.Model),
    "Final model"   = getlmeObjectConfigs(object$output$Final.Model)
  )
  return(r)
}

extractFERRTerms <- function(object) {
  if (is.null(object) || !is.null(object$messages)) {
    return(NULL)
  }
  lnitial <- final <- list(
    formula = printformula(object$input$formula, message = FALSE),
    random_effect = NULL
  )
  final$formula <- printformula(RightFormula2LeftFormula(object$extra$Cleanedformula),
    message = FALSE
  )
  out <- list(
    "Initial formula" = lnitial,
    "Final formula" = final
  )

  if (!is.null(object$input$RRprop)) {
    out$"RR quantile" <- unlist(object$input$RRprop)
  }

  return(out)
}

RightFormula2LeftFormula <- function(formula, removeResIfExists = FALSE) {
  r <- if (!is.null(formula) &&
    length(all_vars0(formula)) > 0) {
    if (removeResIfExists && FormulaHasResponse(formula)) {
      formula <- update(formula, NULL ~ .)
    }

    update(
      as.formula(formula),
      reformulate0(
        termlabels = c(".", all_vars0(formula)[1]),
        response = all_vars0(formula)[1],
        sep = "-"
      )
    )
  } else {
    NULL
  }
  return(r)
}

sd0 <- function(x, ...) {
  if (!is.numeric(x)) {
    return(NA)
  }
  r <- if (length(na.omit(x)) > 1) {
    sd(x, ...)
  } else {
    0
  }
  return(r)
}

SummaryStats <- function(x,
                         formula,
                         # label = 'raw_data_summary_statistics',
                         lower = FALSE,
                         drop = TRUE,
                         sep = "_",
                         removeSpecialChars = FALSE,
                         replace = "_") {
  r <- NULL
  formula <- checkModelTermsInData(
    formula = formula,
    data = x,
    responseIsTheFirst = TRUE
  )
  depVar <- all_vars0(formula)[1]
  if (is.null(depVar)) {
    message0("Null response! check the formula and the data")
    return(NULL)
  }
  # do not move me
  if (any(dim(x) == 0)) {
    return("empty dataset")
  }

  cat <- all_vars0(formula)[!is.continuous(x[, all_vars0(formula), drop = FALSE])]
  if (length(cat) > 0) {
    lvls <- interaction(x[, cat], sep = sep, drop = drop)
  } else {
    lvls <- rep(depVar, nrow(x))
  }

  isNumeric <- is.numeric(x[, depVar])
  summaryT <- as.list(tapply(x[, depVar], INDEX = lvls, function(xx) {
    if (isNumeric) {
      c <- ifelse(length(na.omit(xx)) > 0, length(na.omit(xx)), 0)
      m <- ifelse(length(na.omit(xx)) > 0, mean(xx, na.rm = TRUE), NA)
      sd <- ifelse(length(na.omit(xx)) > 0, sd0(xx, na.rm = TRUE), NA)
      normTest <- normality.test0(xx)
      r <- list(
        "Count" = c,
        "Mean" = m,
        "SD" = sd,
        "Normality test" = normTest
      )
    } else {
      c <- ifelse(length(na.omit(xx)) > 0, length(na.omit(xx)), 0)
      r <- list(
        "Count" = c,
        "Mean" = NULL,
        "SD" = NULL
      )
    }
    return(r)
  }, default = -999.991233210123))
  ##
  fTmp <- function(isNum) {
    if (isNum) {
      r <- list(
        "Count" = 0,
        "Mean" = NA,
        "SD" = NA
      )
    } else {
      r <- list("Count" = 0)
    }
    return(r)
  }
  summaryT[summaryT %in% c(-999.991233210123)] <- fTmp(isNum = isNumeric)

  if (lower) {
    nnames <- tolower(names(summaryT))
  } else {
    nnames <- names(summaryT)
  }

  if (removeSpecialChars) {
    nnames <- RemoveSpecialChars(nnames, replaceBy = replace)
  }

  # r = list(lbl = summaryT)
  # names(r) = label
  r <- summaryT
  return(r)
}

replaceElementInFormula <- function(formula,
                                    pattern,
                                    replace) {
  as.formula(gsub(
    pattern = pattern,
    replacement = replace,
    x = formula,
    fixed = TRUE
  ))
}

RemoveSpecialChars <- function(x,
                               what = "[^0-9A-Za-z]",
                               replaceBy = "_",
                               message = FALSE) {
  what <- gsub(
    pattern = "]",
    x = what,
    replacement = paste0(replaceBy, "]")
  )
  if (message) {
    message0(
      "pattern: ",
      what,
      "; replaced by ",
      replaceBy
    )
  }
  r <- gsub(what, replaceBy, x, ignore.case = TRUE)
  ###
  if (any(nchar(r) < 1)) {
    RN <- RandomRegardSeed(1, stringOutput = TRUE, round = 8)
    r[nchar(r) < 1] <- paste("no_name",
      RN,
      sep = "_",
      collapse = "_"
    )
  }
  return(r)
}

RandomRegardSeed <- function(n = 1,
                             max = 10^9,
                             decimal = TRUE,
                             round = 5,
                             stringOutput = FALSE,
                             what = "[^0-9A-Za-z]",
                             replaceBy = "_") {
  r <- runif(n, 1, as.numeric(Sys.time()) * 10000) %% max
  if (decimal) {
    r <- r %% 1
  }
  r <- round(r, digits = round)
  if (stringOutput) {
    r <- RemoveSpecialChars(as.character(r), what = what, replaceBy = replaceBy)
  }
  return(r)
}


####
rndProce <- function(procedure = NULL) {
  if (length(procedure) < 1 ||
    is.null(procedure) ||
    # !(procedure %in% lop()) ||
    length(procedure) > 1) {
    message0(
      "Error in inputing the procedure symbol. Current input: ",
      ifelse(is.null(procedure), "NULL", procedure),
      ". The default random effect, (1 |  Batch), is selected."
    )
    return(reformulate(" 1 |  Batch", response = NULL, intercept = TRUE))
  }
  ##############################################################
  if (procedure == "TYPICAL") {
    random <- reformulate(" 1 |  Batch", response = NULL, intercept = TRUE)
  } else if (procedure == "ABR") {
    random <- reformulate(" 1 |  Batch", response = NULL, intercept = TRUE)
  } else if (procedure == "ACS") {
    random <- reformulate(" 1 |  Batch", response = NULL, intercept = TRUE)
  } else if (procedure == "ALZ") {
    random <- reformulate(" 1 |  Batch", response = NULL, intercept = TRUE)
  } else if (procedure == "BLK") {
    random <- reformulate(" 1 |  Batch", response = NULL, intercept = TRUE)
  } else if (procedure == "BWT") {
    random <- reformulate(" 1 |  Batch", response = NULL, intercept = TRUE)
  } else if (procedure == "CAL") {
    random <- reformulate(" 1 |  Batch", response = NULL, intercept = TRUE)
  } else if (procedure == "CBC") {
    random <- reformulate(" 1 |  Batch", response = NULL, intercept = TRUE)
  } else if (procedure == "CHL") {
    random <- reformulate(" 1 |  Batch", response = NULL, intercept = TRUE)
  } else if (procedure == "CSD") {
    random <- reformulate(" 1 |  Batch", response = NULL, intercept = TRUE)
  } else if (procedure == "DXA") {
    random <- reformulate(" 1 |  Batch", response = NULL, intercept = TRUE)
  } else if (procedure == "ECG") {
    random <- reformulate(" 1 |  Batch", response = NULL, intercept = TRUE)
  } else if (procedure == "ECH") {
    random <- reformulate(" 1 |  Batch", response = NULL, intercept = TRUE)
  } else if (procedure == "ELZ") {
    random <- reformulate(" 1 |  Batch", response = NULL, intercept = TRUE)
  } else if (procedure == "EVL") {
    random <- reformulate(" 1 |  Batch", response = NULL, intercept = TRUE)
  } else if (procedure == "EVM") {
    random <- reformulate(" 1 |  Batch", response = NULL, intercept = TRUE)
  } else if (procedure == "EVO") {
    random <- reformulate(" 1 |  Batch", response = NULL, intercept = TRUE)
  } else if (procedure == "EVP") {
    random <- reformulate(" 1 |  Batch", response = NULL, intercept = TRUE)
  } else if (procedure == "EYE") {
    random <- reformulate(" 1 |  Batch", response = NULL, intercept = TRUE)
  } else if (procedure == "FER") {
    random <- reformulate(" 1 |  Batch", response = NULL, intercept = TRUE)
  } else if (procedure == "GEL") {
    random <- reformulate(" 1 |  Batch", response = NULL, intercept = TRUE)
  } else if (procedure == "GEM") {
    random <- reformulate(" 1 |  Batch", response = NULL, intercept = TRUE)
  } else if (procedure == "GEO") {
    random <- reformulate(" 1 |  Batch", response = NULL, intercept = TRUE)
  } else if (procedure == "GEP") {
    random <- reformulate(" 1 |  Batch", response = NULL, intercept = TRUE)
  } else if (procedure == "GPL") {
    random <- reformulate(" 1 |  Batch", response = NULL, intercept = TRUE)
  } else if (procedure == "GPM") {
    random <- reformulate(" 1 |  Batch", response = NULL, intercept = TRUE)
  } else if (procedure == "GPO") {
    random <- reformulate(" 1 |  Batch", response = NULL, intercept = TRUE)
  } else if (procedure == "GRS") {
    random <- reformulate(" 1 |  Batch", response = NULL, intercept = TRUE)
  } else if (procedure == "HEM") {
    random <- reformulate(" 1 |  Batch", response = NULL, intercept = TRUE)
  } else if (procedure == "HIS") {
    random <- reformulate(" 1 |  Batch", response = NULL, intercept = TRUE)
  } else if (procedure == "HWT") {
    random <- reformulate(" 1 |  Batch", response = NULL, intercept = TRUE)
  } else if (procedure == "IMM") {
    random <- reformulate(" 1 |  Batch", response = NULL, intercept = TRUE)
  } else if (procedure == "INS") {
    random <- reformulate(" 1 |  Batch", response = NULL, intercept = TRUE)
  } else if (procedure == "IPG") {
    random <- reformulate(" 1 |  Batch", response = NULL, intercept = TRUE)
  } else if (procedure == "OFD") {
    random <- reformulate(" 1 |  Batch", response = NULL, intercept = TRUE)
  } else if (procedure == "PAT") {
    random <- reformulate(" 1 |  Batch", response = NULL, intercept = TRUE)
  } else if (procedure == "VIA") {
    random <- reformulate(" 1 |  Batch", response = NULL, intercept = TRUE)
  } else if (procedure == "XRY") {
    random <- reformulate(" 1 |  Batch", response = NULL, intercept = TRUE)
  } else {
    random <- reformulate(" 1 |  Batch", response = NULL, intercept = TRUE)
  }
  return(random)
}

UniqueRatio <- function(x, ratio = TRUE) {
  if (length(x) < 1 ||
    length(na.omit(x)) < 1) {
    return(0)
  }
  x <- na.omit(x)
  n <- length(x)
  un <- length(unique(x))
  r <- ifelse(n > 0, un / n, 0)
  if (ratio) {
    r <- round(r * 100)
  }
  return(r)
}

mean0 <- function(x, na.rm = TRUE) {
  if (length(x) > 0 &&
    is.numeric(x)) {
    return(mean(x, na.rm = na.rm))
  } else {
    return(NULL)
  }
}

sd01 <- function(x, na.rm = TRUE) {
  if (length(x) > 0 &&
    is.numeric(x)) {
    return(sd0(x, na.rm = na.rm))
  } else {
    return(NULL)
  }
}

normality.test0 <- function(x, message = FALSE, ...) {
  if (!is.null(x) &&
    is.numeric(x) &&
    length(x) > 3 &&
    !is.na(sd0(x, na.rm = TRUE)) &&
    length(unique(na.omit(x))) > 3 &&
    sd0(x, na.rm = TRUE) > 0) {
    if (message)
      message0('The normality test result/p-value should be considered carefully.')
    #################### Shapiro
    if (length(x) < 5000) {
      r <- list(
        "P-value"          = shapiro.test(x, ...)$p.value,
        "Unique N"         = length(unique(na.omit(x))),
        "N"                = length(x),
        "Unique N/N percent" = UniqueRatio(x),
        "Mean"             = mean0(x),
        "SD"               = sd01(x),
        "Test"             = "Shapiro",
        "Note"             = "Cautions require when too many duplicates exist in data."
      )
    } else {
      #################### Kolmogorov-Smirnov
      precision <- 3 + decimalplaces(x = min(x, na.rm = TRUE))
      ksresult <- ks.test0(
      	x = jitter(
      		x = x,
      		amount = precision
      	),
      	y = "pnorm",
      	alternative = "two.sided",
      	...
      )$p.value
      r <- list(
      	"P-value" = ksresult,
      	"Unique N" = length(unique(na.omit(x))),
      	"N" = length(x),
      	"Unique N/N percent" = UniqueRatio(x),
      	"Mean" = mean0(x),
      	"SD" = sd01(x),
      	"Test" = "Kolmogorov-Smirnov",
      	"Note" = paste0(
      		ifelse(
      			is.null(ksresult),
      			'Cannot calculate ks.test() even with small',
      			'Small'
      		),
      		" jitter (precision = ",
      		precision,
      		" decimals) added to possible ties (duplicates)."
      	)
      )
    }
  } else {
    r <- list(
      "P-value"            = NULL,
      "Unique N"           = length(unique(na.omit(x))),
      "N"                  = length(x),
      "Unique N/N percent" = UniqueRatio(x),
      "Mean"     = mean0(x),
      "SD"       = sd01(x),
      "Test"     = "No test applied to this data. Please check the data for possible QC issues",
      "Note"     = NULL
    )
  }
  return(r)
}


QuyalityTests <- function(object,
                          levels = c("Genotype", "Sex", "LifeStage"),
                          list = TRUE,
                          noDataLab = "No data",
                          sep = "_",
                          collapse = "_") {
  if (is.null(object) ||
    length(levels) < 1) {
    message0("\tSkipped . No model or the levels in the data for the quality test")
    return(NULL)
  }

  r <- resid(object)
  d <- getData(object)
  levels <- levels[levels %in% names(d)]
  levels <- levels[!is.continuous(d[, levels, drop = FALSE])]
  counter <- 1
  flst <- NULL
  if (length(levels) > 0) {
    for (i in seq_along(levels)) {
      cmb <- combn(x = levels, i)
      for (j in seq_len(ncol(cmb))) {
        result <- tapply(r, as.list(d[, cmb[, j], drop = FALSE]), function(x) {
          normality.test0(x)
        })
        if (!is.null(result)) {
          flst[[counter]] <- result
          names(flst)[counter] <- paste(cmb[, j], collapse = collapse, sep = sep)
          counter <- counter + 1
        }
      }
    }
    flst$Overall <- normality.test0(x = r)
    if (list) {
      flst <- as.list(lapply(flst, function(f) {
        r <- f
        if (length(dim(f)) > 1) {
          r <- as.matrix(as.data.frame(f))
          r <- unmatrix0(r)
        }
        r[is.na(r)] <- noDataLab
        r <- as.list(r)
        return(r)
      }))
    }
    return(flst)
  } else {
    return(NULL)
  }
}

as.list0 <- function(x, ...) {
  if (!is.null(x)) {
    return(as.list(x, ...))
  } else {
    return(NULL)
  }
}

AllEffSizes <- function(object, depVariable, effOfInd, data) {
  if (length(effOfInd) < 1 ||
    all(effOfInd == 1)) {
    message0("\tSkipped . No variable found for the effect size ...")
    return(NULL)
  }
  lst <- flst <- olst <- NULL
  data <- NormaliseDataFrame(data)
  effOfInd <- effOfInd[effOfInd %in% names(data)]
  counter1 <- counter2 <- 1
  if (!is.null(effOfInd) && length(effOfInd)) {
    cats <- effOfInd[!is.continuous(data[, effOfInd, drop = FALSE])]
    for (eff in effOfInd) {
      message0("\tLevel:", pasteComma(unlist(eff)))
      # 1. Main effect
      lstTmp <- eff.size(
        object = object,
        depVariable = depVariable,
        effOfInd = eff,
        errorReturn = NULL,
        data = data
      )
      if (!is.null(lstTmp)) {
        lst[[counter1]] <- lstTmp
        names(lst)[counter1] <- eff
        counter1 <- counter1 + 1
      }
      # 2. All subset interactions effect sizes
      if (length(cats) > 1) {
        for (j in seq_along(cats)) {
          cmbn <- combn(x = cats, m = j)
          for (k in seq_len(ncol(cmbn))) {
            interact <- interaction(data[, cmbn[, k], drop = FALSE], sep = " ", drop = TRUE)
            for (lvl in levels(interact)) {
              message0("\tLevel:", pasteComma(unlist(lvl)))
              olstTmp <- eff.size(
                object = object,
                data = droplevels0(data[interact %in% lvl, , drop = FALSE]),
                depVariable = depVariable,
                errorReturn = NULL,
                effOfInd = eff
              )
              if (!is.null(olstTmp)) {
                olst[[counter2]] <- olstTmp
                names(olst)[counter2] <- paste(eff, lvl, sep = "_")
                counter2 <- counter2 + 1
              }
            }
          }
        }
      }
    }
    flst <- as.list(c(lst, olst))
    return(flst)
  } else {
    return(NULL)
  }
}

extractAICc <- function(fit, scale = FALSE, k = NULL, ...) {
  requireNamespace("AICcmodavg")
  # k=0 is just loglikelihood or -2*logLik(fit)
  if (k == 0) {
    extractAIC(
      fit = fit,
      scale = scale,
      k = 0,
      ...
    )
  } else {
    edf <- AICc(mod = fit, return.K = TRUE, ...)
  }

  AIC <- AICc(mod = fit, return.K = FALSE, ...)
  l <- list(edf = edf, AIC = AIC)
  return(unlist(l))
}

stepAIC0 <- function(object,
                     scope,
                     scale = 0,
                     direction = c(
                       "both", "backward",
                       "forward"
                     ),
                     trace = 1,
                     keep = NULL,
                     steps = 1000,
                     use.start = FALSE,
                     k = 2,
                     ...) {
  if (is.null(object)) {
    message0("Null object in optimisation ...")
    return(object)
  }
  mydeviance <- function(x, ...) {
    dev <- deviance(x)
    if (!is.null(dev)) {
      dev
    } else {
      extractAICc(x, k = 0)[2L]
    }
  }
  cut.string <- function(string) {
    if (length(string) > 1L) {
      string[-1L] <- paste("\n", string[-1L], sep = "")
    }
    string
  }
  re.arrange <- function(keep) {
    namr <- names(k1 <- keep[[1L]])
    namc <- names(keep)
    nc <- length(keep)
    nr <- length(k1)
    array(unlist(keep, recursive = FALSE), c(nr, nc), list(
      namr,
      namc
    ))
  }
  step.results <- function(models, fit, object, usingCp = FALSE) {
    change <- sapply(models, "[[", "change")
    rd <- sapply(models, "[[", "deviance")
    dd <- c(NA, abs(diff(rd)))
    rdf <- sapply(models, "[[", "df.resid")
    ddf <- c(NA, abs(diff(rdf)))
    AIC <- sapply(models, "[[", "AIC")
    heading <- c(
      "Stepwise Model Path \nAnalysis of Deviance Table",
      "\nInitial Model:",
      deparse(formula(object)),
      "\nFinal Model:",
      deparse(formula(fit)),
      "\n"
    )
    aod <- if (usingCp) {
      data.frame(
        Step = change,
        Df = ddf,
        Deviance = dd,
        `Resid. Df` = rdf,
        `Resid. Dev` = rd,
        Cp = AIC,
        check.names = FALSE
      )
    } else {
      data.frame(
        Step = change,
        Df = ddf,
        Deviance = dd,
        `Resid. Df` = rdf,
        `Resid. Dev` = rd,
        AIC = AIC,
        check.names = FALSE
      )
    }
    attr(aod, "heading") <- heading
    class(aod) <- c("Anova", "data.frame")
    fit$anova <- aod
    fit
  }
  Terms <- terms(object)
  object$formula <- Terms
  if (inherits(object, "lme")) {
    object$call$fixed <- Terms
  } else if (inherits(object, "gls")) {
    object$call$model <- Terms
  } else {
    object$call$formula <- Terms
  }
  if (use.start) {
    warning("'use.start' cannot be used with R's version of 'glm'")
  }
  md <- missing(direction)
  direction <- match.arg(direction)
  backward <- direction == "both" | direction == "backward"
  forward <- direction == "both" | direction == "forward"
  if (missing(scope)) {
    fdrop <- numeric()
    fadd <- attr(Terms, "factors")
    if (md) {
      forward <- FALSE
    }
  }
  else {
    if (is.list(scope)) {
      fdrop <- if (!is.null(fdrop <- scope$lower)) {
        attr(terms(update.formula(object, fdrop)), "factors")
      } else {
        numeric()
      }
      fadd <- if (!is.null(fadd <- scope$upper)) {
        attr(terms(update.formula(object, fadd)), "factors")
      }
    }
    else {
      fadd <- if (!is.null(fadd <- scope)) {
        attr(terms(update.formula(object, scope)), "factors")
      }
      fdrop <- numeric()
    }
  }
  models <- vector("list", steps)
  if (!is.null(keep)) {
    keep.list <- vector("list", steps)
  }
  n <- nobs(object, use.fallback = TRUE)
  fit <- object
  bAIC <- extractAICc(fit, scale, k = k, ...)
  edf <- bAIC[1L]
  bAIC <- bAIC[2L]
  if (is.na(bAIC)) {
    stop("AIC is not defined for this model, so 'stepAIC' cannot proceed")
  }
  if (bAIC == -Inf) {
    stop("AIC is -infinity for this model, so 'stepAIC' cannot proceed")
  }
  nm <- 1
  Terms <- terms(fit)
  if (trace) {
    cat("Start:  AICc=",
      format(round(bAIC, 2)),
      "\n",
      cut.string(deparse(formula(fit))),
      "\n\n",
      sep = ""
    )
    utils::flush.console()
  }
  models[[nm]] <- list(
    deviance = mydeviance(fit),
    df.resid = n -
      edf,
    change = "",
    AIC = bAIC
  )
  if (!is.null(keep)) {
    keep.list[[nm]] <- keep(fit, bAIC)
  }
  usingCp <- FALSE
  while (steps > 0) {
    steps <- steps - 1
    AIC <- bAIC
    ffac <- attr(Terms, "factors")
    if (!is.null(sp <-
      attr(Terms, "specials")) && !is.null(st <- sp$strata)) {
      ffac <- ffac[-st, ]
    }
    scope <- factor.scope(ffac, list(add = fadd, drop = fdrop))
    aod <- NULL
    change <- NULL
    if (backward && length(scope$drop)) {
      aod <- dropterm0(
        fit,
        scope$drop,
        scale = scale,
        trace = max(
          0,
          trace - 1
        ),
        k = k,
        ...
      )
      rn <- row.names(aod)
      row.names(aod) <- c(rn[1L], paste("-", rn[-1L], sep = " "))
      if (any(aod$Df == 0, na.rm = TRUE)) {
        zdf <- aod$Df == 0 & !is.na(aod$Df)
        nc <- match(c("Cp", "AIC"), names(aod))
        nc <- nc[!is.na(nc)][1L]
        ch <- abs(aod[zdf, nc] - aod[1, nc]) > 0.01
        if (any(is.finite(ch) & ch)) {
          warning("0 df terms are changing AIC")
          zdf <- zdf[!ch]
        }
        if (length(zdf) > 0L) {
          change <- rev(rownames(aod)[zdf])[1L]
        }
      }
    }
    if (is.null(change)) {
      if (forward && length(scope$add)) {
        aodf <- addterm(
          fit,
          scope$add,
          scale = scale,
          trace = max(0, trace - 1),
          k = k,
          ...
        )
        rn <- row.names(aodf)
        row.names(aodf) <- c(rn[1L], paste("+", rn[-1L],
          sep = " "
        ))
        aod <- if (is.null(aod)) {
          aodf
        } else {
          rbind(aod, aodf[-1, , drop = FALSE])
        }
      }
      attr(aod, "heading") <- NULL
      if (is.null(aod) || ncol(aod) == 0) {
        break
      }
      nzdf <- if (!is.null(aod$Df)) {
        aod$Df != 0 | is.na(aod$Df)
      }
      aod <- aod[nzdf, ]
      if (is.null(aod) || ncol(aod) == 0) {
        break
      }
      nc <- match(c("Cp", "AIC"), names(aod))
      nc <- nc[!is.na(nc)][1L]
      o <- order(aod[, nc])
      if (trace) {
        print(aod[o, ])
        utils::flush.console()
      }
      if (o[1L] == 1) {
        break
      }
      change <- rownames(aod)[o[1L]]
    }
    usingCp <- match("Cp", names(aod), 0) > 0
    fit <- update(fit, paste("~ .", change), evaluate = FALSE)
    fit <- eval.parent(fit)
    nnew <- nobs(fit, use.fallback = TRUE)
    if (all(is.finite(c(n, nnew))) && nnew != n) {
      message0("\t Warning! number of rows in use has changed: remove missing values ...")
    }
    Terms <- terms(fit)
    bAIC <- extractAICc(fit, scale, k = k, ...)
    edf <- bAIC[1L]
    bAIC <- bAIC[2L]
    if (trace) {
      cat("\nStep:  AIC=",
        format(round(bAIC, 2)),
        "\n",
        cut.string(deparse(formula(fit))),
        "\n\n",
        sep = ""
      )
      utils::flush.console()
    }
    if (bAIC >= AIC + 1e-07) {
      break
    }
    nm <- nm + 1
    models[[nm]] <- list(
      deviance = mydeviance(fit),
      df.resid = n -
        edf,
      change = change,
      AIC = bAIC
    )
    if (!is.null(keep)) {
      keep.list[[nm]] <- keep(fit, bAIC)
    }
  }
  if (!is.null(keep)) {
    fit$keep <- re.arrange(keep.list[seq(nm)])
  }
  step.results(models = models[seq(nm)], fit, object, usingCp)
}

dropterm0 <-
  function(object,
           scope,
           scale = 0,
           test = c("none", "Chisq"),
           k = 2,
           sorted = FALSE,
           trace = FALSE,
           ...) {
    tl <- attr(terms(object), "term.labels")
    if (missing(scope)) {
      scope <- drop.scope(object)
    } else {
      if (!is.character(scope)) {
        scope <- attr(
          terms(update.formula(object, scope)),
          "term.labels"
        )
      }
      if (!all(match(scope, tl, 0L))) {
        stop("scope is not a subset of term labels")
      }
    }
    ns <- length(scope)
    ans <-
      matrix(
        nrow = ns + 1L,
        ncol = 2L,
        dimnames = list(c(
          "<none>",
          scope
        ), c("df", "AIC"))
      )
    ans[1, ] <- extractAICc(object, scale, k = k, ...)
    n0 <- nobs(object, use.fallback = TRUE)
    env <- environment(formula(object))
    for (i in seq_len(ns)) {
      tt <- scope[i]
      if (trace) {
        message(gettextf("trying - %s", tt), domain = NA)
        utils::flush.console()
      }
      nfit <- update(object, as.formula(paste("~ . -", tt)),
        evaluate = FALSE
      )
      nfit <- eval(nfit, envir = env)
      ans[i + 1, ] <- extractAICc(nfit, scale, k = k, ...)
      nnew <- nobs(nfit, use.fallback = TRUE)
      if (all(is.finite(c(n0, nnew))) && nnew != n0) {
        message0("\t Warning! number of rows in use has changed: remove missing values ...")
      }
    }
    dfs <- ans[1L, 1L] - ans[, 1L]
    dfs[1L] <- NA
    aod <- data.frame(Df = dfs, AIC = ans[, 2])
    o <- if (sorted) {
      order(aod$AIC)
    } else {
      seq_along(aod$AIC)
    }
    test <- match.arg(test)
    if (test == "Chisq") {
      dev <- ans[, 2L] - k * ans[, 1L]
      dev <- dev - dev[1L]
      dev[1L] <- NA
      nas <- !is.na(dev)
      P <- dev
      P[nas] <- safe_pchisq0(dev[nas], dfs[nas], lower.tail = FALSE)
      aod[, c("LRT", "Pr(Chi)")] <- list(dev, P)
    }
    aod <- aod[o, ]
    head <-
      c("Single term deletions", "\nModel:", deparse(formula(object)))
    if (scale > 0) {
      head <- c(head, paste("\nscale: ", format(scale), "\n"))
    }
    class(aod) <- c("anova", "data.frame")
    attr(aod, "heading") <- head
    aod
  }

safe_pchisq0 <- function(q, df, ...) {
  df[df <= 0] <- NA
  pchisq(q = q, df = df, ...)
}

lowHighList <- function(x, y, ...) {
  if (!is.null(x) || !is.null(y)) {
    r <- list("Low" = x, "High" = y, ...)
  } else {
    r <- list("Low" = x, "High" = y)
  }
  return(r)
}

factorise <- function(dataset, variables) {
  vars <- variables[variables %in% names(dataset)]
  if (length(vars) > 0) {
    for (v in vars) {
      dataset[, v] <- as.factor(dataset[, v])
    }
  }
  return(dataset)
}

OpenStatsListRelabling <- function(dataset, col, l1, rel1, l2, rel2) {
  if (col %in% names(dataset)) {
    dataset[, col] <- as.factor(dataset[, col])
    levels(dataset[, col]) <- capitalise(levels(dataset[, col]))
    if (!is.null(l1)) {
      levels(dataset[, col])[levels(dataset[, col]) %in% l1] <-
        rel1
    }
    if (!is.null(l2)) {
      levels(dataset[, col])[levels(dataset[, col]) %in% l2] <-
        rel2
    }
    lbls <- c(rel1, rel2)
    if (!is.null(lbls) && any(!levels(dataset[, col]) %in% lbls)) {
      message0(
        "There are some unused levels in `",
        col,
        "` that will be removed. \n\t Levels: ",
        pasteComma(levels(dataset[, col]))
      )
      RowIndFromCol <- dataset[, col] %in% lbls
      if (sum(RowIndFromCol) < 1) {
        message0(
          "\t  Preprocessing variable leads to an empty column \n\t   The variable renamed to `",
          paste0(col, "_labels`")
        )
        names(dataset)[names(dataset) %in% col] <- paste0(col, "_labels")
      } else {
        dataset <- droplevels(subset(dataset, RowIndFromCol))
      }
    }
  }
  return(dataset)
}

LevelsAsFacNumbered <- function(x, numbering = TRUE, sep = ". ") {
  if (is.null(x) ||
    length(x) < 1) {
    return(x)
  }
  r <- levels(as.factor(x))
  nr <- length(r)
  if (numbering) {
    r <- paste(seq_len(nr), r, sep = sep)
  }
  return(r)
}

numberingX <- function(x, sep = ". ") {
  if (length(x) < 1) {
    return(x)
  }
  lx <- length(x)
  r <- paste(seq_len(lx), x, sep = sep)
  return(r)
}

checkSummary <- function(dataset, var, numbering = TRUE, ...) {
  lvls <- NULL
  if (is.null(dataset) ||
    is.null(var) ||
    length(na.omit(dataset[, var])) < 1) {
    return(lvls)
  }

  MissingPercent <- round(sum(is.na(dataset[, var])) / length(dataset[, var]) * 100)
  MissingNote <- ifelse(
    length(MissingPercent) > 0 && MissingPercent > 50,
    paste0(MissingPercent, "% [Alert! Too many missings]"),
    paste0(MissingPercent, "%")
  )
  if (is.factor(dataset[, var]) || is.character(dataset[, var])) {
    lvls <- paste0(
      "\t Levels (Total levels = ",
      nlevels(as.factor(dataset[, var])),
      ", missings = ",
      MissingNote,
      "): \n\t  ",
      pasteComma(
        LevelsAsFacNumbered(dataset[, var], numbering = numbering),
        width = 250,
        sep = "\n\t  "
      )
    )
  } else {
    lvls <- paste0(
      "\t Summary:\n",
      "\t  mean      = ",
      mean(dataset[, var], na.rm = TRUE),
      "\n\t  sd        = ",
      sd0(dataset[, var], na.rm = TRUE),
      "\n\t  Missings  = ",
      MissingNote
    )
  }
  message0(lvls)
  return(invisible(lvls))
}

checkOpenStatsColumns <- function(dataset, vars) {
  allExist <- NULL
  if (length(vars)) {
    for (v in vars) {
      r <- v %in% names(dataset)
      message0(
        "Checking whether variable `",
        v,
        "` exists in the data ... \n\tResult = ",
        r
      )
      if (r) {
        checkSummary(dataset = dataset, var = v)
      }
      allExist <- c(allExist, r)
    }
  } else {
    allExist <- FALSE
  }
  return(allExist)
}


fIsBecome <- function(dataset,
                      is = "Assay.Date",
                      rename = "Batch",
                      ifexist = NULL) {
  if (is.null(is) || is.null(rename)) {
    return(dataset)
  }


  for (iss in is) {
    if (iss %in% colnames(dataset) &&
      ifelse(is.null(ifexist), TRUE, !iss %in% ifexist)) {
      ####
      if (!is.null(ifexist) &&
        ifexist %in% colnames(dataset) &&
        !ifexist %in% is) {
        colnames(dataset)[colnames(dataset) %in% rename] <- paste("Original", ifexist, sep = ".")
      }
      ###
      names(dataset)[names(dataset) %in% iss] <-
        rename
      message0(
        "Variable `",
        iss,
        "` renamed to `",
        rename, "`"
      )
      break
    }
  }
  return(dataset)
}

is.df.empty <- function(x) {
  if (is.null(x) || any(dim(x) < 1)) {
    return(TRUE)
  } else {
    return(FALSE)
  }
}

CleanEmptyRecords <- function(x, vars) {
  if (is.df.empty(x)) {
    return(NULL)
  }
  vars1 <- vars[vars %in% names(x)]
  if (length(vars1)) {
    x <- x[all(!is.na(x[, vars1])) && all(x[, vars1] != ""), , drop = FALSE]
  }
  return(x)
}


fastBarnardextest <- function(x,
                              tail = 2,
                              prob = seq(10^-10, 1 - 10^-10, length.out = 101),
                              plot = FALSE) {
  if (is.null(x) ||
    !(is.table(x) ||
      is.matrix(x)) ||
    any(dim(x) != 2)) {
    stop("The input must be a 2 by 2 table/matrix")
  }

  fprob <- function(i, j, c1, c2) {
    n <- c1 + c2
    pa <- i / c1
    pb <- j / c2
    px <- (i + j) / n
    if (px == 0 || pa == pb) {
      return(0)
    } else {
      return((pa - pb) / sqrt(px * (1 - px) * ((1 / c1) + (1 / c2))))
    }
  }
  c <- colSums(x)
  r <- rowSums(x)
  c1 <- c[1]
  c2 <- c[2]
  n <- sum(c)
  pao <- x[1, 1] / c1
  pbo <- x[1, 2] / c2
  pxo <- r[1] / n
  TXO <- abs(pao - pbo) / sqrt(pxo * (1 - pxo) * (1 / c1 + 1 / c2))
  cbn <- matrix(c(rep(0:c1, each = c2 + 1), rep(0:c2, c1 + 1)), nrow = 2, byrow = TRUE)

  n1 <- lfactorial(c1)
  n2 <- lfactorial(c2)
  lprob <- log(prob)
  clprob <- log(1 - prob)
  Fact <- lfactorial(0:max(c1, c2, na.rm = TRUE)[1])
  ###################################################
  T <- sapply(seq_len(ncol(cbn)), function(col) {
    i <- cbn[1, col]
    j <- cbn[2, col]
    s <- n1 + n2 +
      (i + j) * lprob +
      (n - (i + j)) * clprob - sum(Fact[c(
        i + 1,
        j + 1,
        c1 - i + 1,
        c2 - j + 1
      )])
    t <- fprob(
      i = i,
      j = j,
      c1 = c1,
      c2 = c2
    )
    return(c(t = t, s = exp(s)))
  })
  r <- t(cbind(P = apply(T[-1, ], 1, function(x) {
    sum(x[T[1, ] >= TXO])
  }), prob = prob))
  ###################################################
  Nuisance.parameter <- unlist(r[2, ][which.max(r[1, ])])
  p.value <- unlist(r[1, ][which.max(r[1, ])])
  if (plot) {
    plot(
      r[2, ],
      r[1, ],
      type = "l",
      main = "Barnard's exact P-value",
      xlab = "Nuisance parameter",
      ylab = "P.value"
    )
    abline(v = Nuisance.parameter, col = 2, lwd = 2)
  }
  return(
    list(
      p.value = unname(min(tail * p.value, 1)),
      Nuisance.parameter = unname(Nuisance.parameter),
      Wald.Statistic = unname(TXO),
      tail = tail,
      seq = r
    )
  )
}

USerManualSlotName <- function(x, name = "OpenStats") {
  message("The structure of an ", name, ":")
  if (isS4(x)) {
    xn <- slotNames(x)
  } else {
    xn <- names(x)
  }

  if (length(xn) < 1) {
    return(NULL)
  }

  for (i in seq_along(xn)) {
    cat("    ", i, ". ", xn[i], "  \n")
  }
}


isVariableCategorical <- function(var = NULL, data = NULL) {
  if (is.null(data) ||
    is.null(var) ||
    !all(var %in% names(data))) {
    return(FALSE)
  }
  r <- ifelse(is.factor(data[, var]), TRUE, FALSE)
  return(r)
}

RemoveSexWithZeroDataPointInGenSexTableOnlyStatsPipelinenotExposed <- function(df = NULL,
                                                                               cols = c("Genotype", "Sex")) {
  if (is.null(df) ||
    nrow(df) < 1 ||
    !colExists(name = cols[1], data = df) ||
    !colExists(name = cols[2], data = df)) {
    return(df)
  }
  cols <- cols[cols %in% names(df)]
  if (length(cols) != 2) {
    message0("col parameter must have absolutely two values ...")
    return(df)
  }

  tbl <- table(df[, cols[1]], df[, cols[2]])
  if (length(dim(tbl)) > 1) {
    zc <- as.data.frame(tbl)
    zc <- zc[zc$Freq < 1, ]
    if (nrow(zc) > 0) {
      message0("Zero frequency values detected ...")
      names(zc)[seq_along(cols)] <- cols
      df <- df[!df[, cols[-1]] %in% zc[, cols[-1]], ]
      df <- droplevels(df)
    }
  }
  return(df)
}

MakeRRQuantileFromTheValue <- function(x, messages = TRUE) {
  if (length(x) < 1 ||
    length(na.omit(x)) < 1 ||
    !as.numeric(x) ||
    any(x > 1) ||
    any(x < 0)) {
    message0(
      "Quantile is not numeric [or not in [0,1] interval], value = `",
      pasteComma(x),
      "`"
    )
    return(x)
  }
  x.bck <- x
  x <- 1 - (1 - head(x, 1)) / 2
  if (messages) {
    message0(
      "The probability of the middle area in the distribution: ",
      pasteComma(x.bck)
    )
    message0(
      "\t Tails probability: ",
      min(x, 1 - x),
      "\n\t Formula to calculate the tail probabilities: 1-(1-x)/2, (1-x)/2 where x = ",
      x.bck
    )
  }
  return(max(x, 1 - x, na.rm = TRUE))
}

RRextraDetailsExtractor <- function(object,
                                    sep = " = ",
                                    collapse = ", ") {
  r <- NULL
  if (is.null(object) ||
    !is.null(object$messages)) {
    return(r)
  }

  r <- lapply(object$output$SplitModels, function(x) {
    lapply(x, function(y) {
      if (!is.null(y) && "RRextra" %in% names(y)) {
        y2 <- unlist(y$RRextra)
        if (is.null(y2)) {
          return(NULL)
        } else {
          return(paste(names(y2), y2, sep = sep, collapse = collapse))
        }
      }
    })
  })
  return(r)
}


trimColsInDf <- function(df, ...) {
  if (is.null(df) || !is.data.frame(df)) {
    return(df)
  }
  if (nrow(df) < 1) {
    return(df)
  }
  message0("Removing possible leading/trailing whitespace from the variables in the formula ...")
  df2 <- lapply(names(df), function(y) {
    x.bck <- x <- df[, y]
    if (is.numeric(x) || all(is.na(x)) || all(is.nan(x))) {
      x
    } else if (is.factor(x)) {
      levels(x) <- trimws(levels(x), ...)
    } else if (is.character(x)) {
      x <- trimws(x, ...)
    } else {
      x
    }
    if (!identical(x.bck, x)) {
      message0("\t Trim applied to variable `", y, "`")
    }
    return(x)
  })
  df2 <- droplevels(as.data.frame(df2))
  names(df2) <- names(df)
  return(df2)
}

FormatPvalueClassificationTag <- function(x, decimals = 4) {
  r <- ""
  if (is.null(x) || length(x) < 1) {
    return(r)
  }
  r <- if (min(x, na.rm = TRUE) >= 10^-decimals) {
    round(x, digits = decimals)
  } else {
    paste0(
      "< ",
      format(
        10^-decimals,
        digits = decimals,
        trim   = TRUE,
        nsmall = decimals,
        scientific = FALSE
      )
    )
  }
  return(r)
}

is.continuous <- function(x) {
  r <- vapply(x, is.numeric, is.logical(1))
  return(r)
}

totalListElements <- function(x) {
  if (is.null(x)) {
    return(0)
  }
  r <- sum(unlist(lapply(x, length)))
  return(r)
}

MainTitlePlusColon <- function(x = NULL) {
  x <- if (is.null(x)) {
    paste0(x, ": ")
  }
  return(x)
}

seq_along0 <- function(x, makeZero = TRUE) {
  s <- seq_along(x)
  if (makeZero && length(x) < 1) {
    s <- 1:0
  }
  return(s)
}

digit2Scientific <- function(x, digit = 3) {
  if (!is.null(x)   &&
      length(x) > 0 &&
      is.numeric(x)) {
    x[!is.na(x)] <-
      format(x[!is.na(x)], scientific = TRUE, digits = digit)
  }
  return(x)
}

sortDataFrame <- function(x = NULL) {
  if (is.null(x) ||
      !is0(x, c("data.frame", "matrix"))) {
    return(NULL)
  } else {
    return(x[, order(colnames(x)), drop = FALSE])
  }
}

FeFurtherModels = function(x = NULL) {
  if (is.null(x) ||
      is.null(x$output$SplitModels))
    return(NULL)
  r = setNames(lapply(x$output$SplitModels, function(v) {
    lapply0(
      v,
      FUN = function(v2) {
        v3 <-
          extractFisherSubTableResults(v2$result, what = c("p.value", "effect"))
        v3
      }
    )
  }),
  nm = names(x$output$SplitModels))
  return(r)
}

lapply1 <- function(X, FUN, ...) {
  r <- lapply0(X = X, FUN = FUN, ...)
  if (length(r) == 1) {
    r <- r[[1]]
  }
  return(r)
}

extractFisherSubTableResults1 <- function(x, what = "p.value") {
  r <- extractFisherSubTableResults(x = x, what = what)
  if (length(r) == 1) {
    r <- r[[1]]
  }
  return(r)
}
ReFurtherModels = function(x = NULL) {
  if (is.null(x))
    return(NULL)
  r = setNames(lapply0(x, function(v) {
    lapply1(
      v,
      FUN = function(v2) {
        list(Result = extractFisherSubTableResults1(
          x = v2$result,
          what = c("p.value", "effect")
        ),
        RRextra = v2$RRextra)
      }
    )
  }), nm = names(x))
  return(r)
}
mpi2/OpenStats documentation built on Sept. 17, 2022, 3:58 p.m.