R/diagnosticplots.R

Defines functions similarity subjects features covariates

Documented in covariates features subjects

######################################
# Covariates function
# Decomposes the test result into the contributions due to each covariate
######################################
covariates <- function(object, 
            what = c("p-value", "statistic", "z-score", "weighted"), cluster = "average", 
            alpha = 0.05, sort = TRUE, zoom = FALSE, legend = TRUE, plot = TRUE, colors, alias, help.lines = FALSE,
            cex.labels = 0.6, ylim, pdf, trace) {
                                             
  if ((length(object) > 1) && missing(pdf))
    stop("length(object) > 1. Please reduce to a single test result or specify an output file.")
  if (missing(trace)) trace <- gt.options()$trace
  if (missing(alias)) alias <- NULL               # prevents confusion with "alias" method

  if (!missing(pdf)) {
    if (tolower(substr(pdf, nchar(pdf)-3, nchar(pdf))) != ".pdf")
      pdf <- paste(pdf, ".pdf", sep="")
    pdf(pdf)
  }

  # What to plot
  what <- substr(match.arg(tolower(what),  c("p-value", "statistic", "z-score", "weighted")),1,1)
  dendrogram <- plot && (((!is.logical(cluster)) || (cluster)) && (substr(cluster,1,1) != "n"))


  # update legend if asked
  if (is.character(legend)) {
    object@legend$cov <- legend
    legend <- TRUE  
  }
                          
  # prepare alias
  if (!is.null(alias)) {
    if (is.environment(alias) || is(alias, "AnnDbBimap")) alias <- as.list(alias)
    if (is.list(alias)) alias <- unlist(alias)
    if (length(alias) == object@functions$df()[3] && is.null(names(alias))) 
      names(alias) <- object@functions$cov.names()
  }
                                 
  # get the right subsets 
  for (jj in (1:length(object))[size(object)>0]) {
    obj <- object[jj] 
    if (is.null(obj@weights)) 
      weights <- rep(1, size(obj))                                       
    else
      weights <- obj@weights[[1]]
    if (is.null(obj@subsets)) {
      subset <- seq_len(size(obj))
      obj@subsets <- list(subset)
    }
    else
      subset <- obj@subsets[[1]]

    # make a title if necessary
    ttl <- names(obj)
    if (!is.null(alias(obj)))
      ttl <- paste(ttl, "-", alias(obj))

    # get the test function
    test <- function(set) {
      obj@functions$test(subset[set], weights[set])
    }
                                              
    # Test covariates  
    leaves <- matrix(0, size(obj), 5)
    colnames(leaves) <-  c("p", "S", "ES", "sdS", "ncov")
    rownames(leaves) <- obj@functions$cov.names(subset)
    progress <- 1
    if (dendrogram) {
      progress <- 1
      K <- 2*size(obj)-1 
    } else {
      K <- size(obj)
      progress <- 0
    }
    digitsK <- trunc(log10(K)+1)
    for (i in 1:size(obj)) {
      if (trace) {
        if (progress > 0)
          cat(rep("\b", digitsK+trunc(log10(progress))+4), sep="")
        progress <- progress +1
        cat(progress, "/", K)
        flush.console()
      }
      leaves[i,] <- test(i)
    }
                                               
    if (is.null(rownames(leaves)))
      rownames(leaves) <- subset
                                              
    # revert to weighted if asked
    if (what == "w") {
      leaves[,c("S", "ES", "sdS")] <- leaves[,c("S", "ES", "sdS")] * matrix(weights(obj),size(obj),3)
    }
    leaves[leaves[,"sdS"] == 0, "sdS"] <- 1
                                
    # Make bars  
    pps <- -log10(leaves[,"p"] )
    maxlogp <- max(pps[pps!=Inf], 0, na.rm=TRUE)
    pps[pps==Inf] <- maxlogp + 3
    bars <- switch(what, 
      p = pps,
      z = (leaves[,"S"]  - leaves[,"ES"]) / leaves[,"sdS"],
      w=,s= leaves[,"S"]
    )
    names(bars) <- rownames(leaves)
    if (!is.null(alias)) {
      if (length(alias) == length(bars) && (is.null(names(alias)) || is.null(names(bars))))
        names(bars) <- alias
      else {
        names(bars) <- alias[names(bars)]
      }
    }
                             
    if (sort) 
      order.bars <- -pps
    else
      order.bars <- 1:length(bars)
  
    # get default plotting parameters     
    margins <- par("mai")
                                    
    # Make the dendrogram
    if (is.logical(cluster) && dendrogram) cluster <- "average"
    if (dendrogram) {
      if(dim(leaves)[1]==1){
        hc = list(1)
        attr(hc, "label") <- row.names(leaves)[1]
        attr(hc, "members") <- 1
        attr(hc, "leaf") <- TRUE
        attr(hc, "height") <- 0
        attr(hc, "class") <- "dendrogram"
        d2s <- dendro2sets(hc)
        obj@extra <- data.frame(inheritance=p.value(obj))
        if (!is.null(alias)) alias(obj) <- names(bars)
        obj@subsets <- list(row.names(leaves)[1])
        names(obj) <- d2s$names
        sorter <- unlist(hc)
      } else {
        # Get residuals of the alternative regressing out the null
        cors <- obj@functions$dist.cor(subset)
        # Make a distance matrix and a dendrogram
        if (obj@directional)
          dd <- as.dist(1-cors)
        else
          dd <- as.dist(1-abs(cors))   
        hc <- as.dendrogram(hclust(dd, method = cluster))
        # reorder to get the most significant ones to the left
        hc <- reorder(hc, wts=order.bars, agglo.FUN=min)
        sorter <- unlist(hc)
        obj@result =rbind(obj@result,leaves)
        obj@subsets =  c(list(obj@functions$cov.names(obj@subsets[[1]])),  unlist(obj@functions$cov.names(subset)))
        obj@extra <- NULL
        obj@structure <- NULL         
        if (!is.null(alias)) alias(obj) <- c("",names(bars))
        d2s <- dendro2sets(hc)
        obj <- inheritance(obj, sets=d2s$sets, ancestors=d2s$ancestors, trace=trace, Shaffer=TRUE, homogeneous=TRUE)
        obj <- obj[sort.list(names(obj))]
      }

      # sort and select bars
      if (zoom) {
        if (dendrogram) {
          select <- unique(do.call(c, subsets(leafNodes(obj, alpha=alpha))))
          select <- which(rownames(leaves) %in% select)
        } else {
          select <- obj@extra[,"holm"] <= alpha
        }
        sorter <- sorter[sorter %in% select]
      }
      leaves <- leaves[sorter,,drop=FALSE]
      bars <- bars[sorter]

      # Construct a mapping from branch ids to the name of the corresponding set                                 
      branch2name <- names(d2s$branch)
      names(branch2name) <- unlist(lapply(d2s$branch, function(br) paste(".", br, collapse="", sep="")))
                                                       
      # Color the dendrogram
      sigcol <- function(tree, branch, sig, top) {
        branch.name <- branch2name[paste(".", branch, collapse="", sep="")]
      
        # significant node?
        sig <- sig && (obj@extra[branch.name, "inheritance"] <= alpha)
                                                   
        # set colors
        uit <- tree
        attr(uit, "edgePar") <- list(col=ifelse(sig, 1, gray(.8)), lwd= ifelse(sig, 2, 1))
        if (sig && top) 
          attr(uit, "nodePar") <- list(pch=20)

        # continue with the child branches
        if (!is.leaf(tree)) {
          select.branch <- 1:length(tree)
          if (zoom) {
            sigs <- lapply(1:length(tree), function(i) {
              subbranch <- branch2name[paste(".", c(branch, i), collapse="", sep="")]
              obj@extra[subbranch, "inheritance"] <= alpha
            })
            if (do.call(any, sigs) && (!do.call(all, sigs))) {
              select.branch <- which(do.call(c, sigs))
              attrs <- attributes(uit)
              uit <- list()
              attributes(uit) <- attrs
            } 
            attr(uit, "members") <- sum(select %in% unlist(tree))
          }  
          for (i in 1:length(select.branch)) {
            uit[[i]] <- Recall(tree[[select.branch[i]]], c(branch, select.branch[i]), sig, FALSE)
          }
          if (length(uit) == 1)
            attr(uit, "midpoint") <- attr(uit[[1]], "midpoint")
          else {
            leftmid <- attr(uit[[1]], "midpoint")
            rightmid <- attr(uit[[2]], "midpoint") + attr(uit[[1]], "members")
            attr(uit, "midpoint") <- (leftmid + rightmid)/2
          }  
        } else {
          attr(uit, "midpoint") <- 0
        }  
        return(uit)
      }
      hc <- sigcol(hc, numeric(0), sig = TRUE, top=TRUE)
                  
      # draw
      par(mai=c(0, max(1,margins[2]), margins[3:4]))
      layout(as.matrix(1:2), heights=c(1,2))
      ylab <- ifelse(obj@directional, "correlation", "abs. correlation")
      plot(hc, leaflab="none", yaxt = "n", ylab=ylab, mgp=c(4,1,0))
      axis(2, at = seq(0,2,by=.2), labels=1-seq(0,2,by=.2), las=2)
    } else {
      obj@subsets <- as.list(row.names(leaves))
      obj@result <- leaves
      obj@extra <- NULL
      if (!is.null(alias)) alias(obj) <- names(bars)
      obj@weights <- NULL
      colnames(obj@result) <- c("p-value", "Statistic", "Expected", "Std.dev", "#Cov")
      names(obj) <- row.names(leaves)
      sorter <- sort.list(order.bars) 
      if (zoom) obj <- p.adjust(obj, "holm")
      obj <- obj[sorter]
      bars <- bars[sorter]
      if (trace)
        cat("\n")
    }
                         
    # adjust bottom margin to length of labels                 
    labwidth <- max(strwidth(names(bars),"inches", cex.labels)) + .2
    par(mai = c(max(margins[1], labwidth*1.3), max(1,margins[2]), if (dendrogram) 0 else margins[3], margins[4]))
  
    #colors
    positive <- obj@functions$positive(subset)[sorter]
    if (missing(colors)) 
      if (max(positive) <= 2)  # multinomial model
        colors <- 3:2
      else
        colors <- rainbow(length(obj@legend$cov), start=0,end=1/2)
    if (all(positive %in% 0:1))  
      cols <- ifelse(positive, colors[1], colors[2])
    else
      cols <- colors[positive]
                             
    ylab <- switch(what,
      p = "p-value",
      z = "z-score",
      s = "test statistic",
      w = "weighted test statistic"
    )
    if (!missing(ylim)) { 
      ylims <- ylim
    } else {
      ylims <- switch(what, 
        z=,p = range(bars),
        w=,s = range(c(bars, leaves[,"ES"]))
      )
      if (ylims[1] > 0) ylims[1] <- 0
    }
    if (legend) {
      nbars <- length(bars)
      room <- (ylims[2] - max(bars[trunc(nbars*.6):nbars])) / diff(ylims)
      ylims[2] <- ylims[2] + diff(ylims) * max(0,.1*length(colors) - room)
    }
    mids <- drop(barplot(bars, yaxt="n", border=NA, las=2, ylab=ylab, ylim=ylims, mgp=c(4,1,0), col=cols, cex.names=cex.labels, plot=plot))
    
    # help lines
    if (dendrogram && help.lines) {
      mb <- max(bars)
      for (i in 1: length(bars))
        lines(c(mids[i],mids[i]),c(max(0,bars[i])+.01*mb,mb*1.2),col=gray(.8),lty=3 )
    }    
    
    # construct appropriate axes
    if(plot) {
      if (what == "p") {
        labs <- seq(0,ylims[2], by = max(1,ylims[2] %/% 5))
        if (length(labs)==1) {
          minp <- 10^-ylims[2]
          if (minp < 0.5) {
            labs <- log10(c(1,2,10/3,5))
            labs <- labs[labs < ylims[2]]
          } else {
            fc <- 10^-floor(log10(1-minp)) 
            labs <- -log10(c(1,ceiling(minp*fc)/fc))
          }
        } else if (length(labs) <= 2)
          labs <- outer(log10(c(1,2,5)),labs,"+")
        else if (length(labs) <= 4)
          labs <- outer(log10(c(1,10/3)),labs,"+")
        if (max(bars) > ylims[2]) #zero p-values
          axis(2, at = c(labs, max(bars)), labels=c(10^-labs, 0), las=2)
        else
          axis(2, at = labs, labels=10^-labs, las=2)
      } else
        axis(2, las=2)
      if (what %in% c("s","w")) {
        sapply(seq_along(mids), function(i) { 
          lines(c(mids[i]-0.5, mids[i]+0.5), rep(leaves[i,"ES"],2), lwd=3)
           sapply(seq_len(max(0, (bars[i] - leaves[i,"ES"])/leaves[i,"sdS"])), function(k)
            lines(c(mids[i]-0.5, mids[i]+0.5), rep(leaves[i,"ES"]+k*leaves[i,"sdS"],2))
          )
        })
      }
      abline(0,0)
    
      if (legend)               
        legend("topright", obj@legend$cov, fill = colors, bg="white")
  
      #reset defaults 
      layout(1)
      par(mai=margins)
          
      if (!missing(pdf)) {
        title(ttl)
      }
    }
  }

  if (!missing(pdf))
    dev.off()
  
  # return
  if (length(object) == 1) {
    out <- obj
  } else
    out <- NULL

  return(invisible(out))
}

######################################
# features function
# Synonym of "covariates"
######################################
features <- function(...) {
  covariates(...)
}




######################################
# Subjects function
# Decomposes the test result into the contributions due to each subject
######################################
subjects <- function(object,
            what = c("p-value", "statistic", "z-score", "weighted"), cluster = "average",
            sort=TRUE, mirror = TRUE, legend = TRUE, colors, alias, help.lines = FALSE, 
            cex.labels = 0.6, ylim, pdf) {
            
  if ((length(object) > 1) && missing(pdf))
    stop("length(object) > 1. Please reduce to a single test result or specify an output file.")
  if (missing(alias)) alias <- NULL               # prevents confusion with "alias" method
    
  if (!missing(pdf)) {
    if (tolower(substr(pdf, nchar(pdf)-3, nchar(pdf))) != ".pdf")
      pdf <- paste(pdf, ".pdf", sep="")
    pdf(pdf)
  }    

  # update legend if asked
  if (is.character(legend)) {
    object@legend$subj <- legend
    legend <- TRUE  
  }
  
  # What to plot
  what <- substr(match.arg(tolower(what),  c("p-value", "statistic", "z-score", "weighted")),1,1)


  # get the right subsets
  for (jj in 1:length(object)) {
    obj <- object[jj]  
    if (is.null(obj@weights))
      weights <- rep(1, size(obj))
    else
      weights <- obj@weights[[1]]
    if (is.null(obj@subsets))
      subset <- seq_len(size(obj))
    else
      subset <- obj@subsets[[1]]

    # make a title if necessary
    ttl <- names(obj)
    if (!is.null(alias(obj)))
 
      ttl <- paste(ttl, "-", alias(obj))    
  
    # calculate scores
    rr <- obj@functions$subjectplot(subset, weights, mirror)
    if (what == "w") {
      rr[,1:3] <- rr[,1:3] * matrix(abs(rr[,4])/max(abs(rr[,4])),nrow(rr),3)
    }
  
    # Make bars
    zs <- (rr[,1] - rr[,2]) / rr[,3]
    if (mirror) 
      pps <- pnorm(zs, lower.tail=FALSE)
    else
      pps <- pnorm(sign(rr[,4]) * zs, lower.tail=FALSE)
    bars <- switch(what,
      w=,s= rr[,1],
      z = zs,
      p = -log10(pps)
    )
    if (is.null(alias))
      names(bars) <- rownames(obj@functions$getX(subset))
    else
      names(bars) <- alias
    if (is.null(names(bars)))
      names(bars) <- 1:length(bars)
    if (sort)
      order.bars <- -bars #if (mirror || what == "p") -bars * sign(rr[,4]) else -bars 
    else
      order.bars <- 1:length(bars)
                                                          
    # get default plotting parameters
    margins <- par("mai")
  
    # Make the dendrogram
    dendrogram <- ((!is.logical(cluster)) || (cluster)) && (substr(cluster,1,1) != "n")
    if (is.logical(cluster) && dendrogram) cluster <- "average"
    if (dendrogram) {
      # Get residuals of the alternative regressing out the null
      cors <- obj@functions$dist.cor(subset, weights, transpose=TRUE)
                                                       
      # Make a distance matrix and a dendrogram
      dd <- as.dist(1-cors)
      hc <- as.dendrogram(hclust(dd, method = cluster))
  
      # reorder to get the most significant ones to the left
      hc <- reorder(hc, wts=order.bars, agglo.FUN=min)
      sorter <- unlist(hc)
  
      # draw
      par(mai=c(0, max(1,margins[2]), margins[3:4]))
      layout(as.matrix(1:2), heights=c(1,2))
      ylab <- "correlation"
      plot(hc, leaflab="none", yaxt = "n", ylab=ylab, mgp=c(4,1,0))
      axis(2, at = seq(0,2,by=.2), labels=1-seq(0,2,by=.2), las=2)
    } else {
      sorter <- sort.list(order.bars)
    }
  
    bars <- bars[sorter]
    rr <- rr[sorter,]
    pps <- pps[sorter]
  
    labwidth <- max(strwidth(names(bars),"inches", cex.labels)) + .2
    par(mai = c(max(margins[1], labwidth*1.3), max(1,margins[2]), if (dendrogram) 0 else margins[3], margins[4]))
                                     
    #colors
    if (missing(colors)) 
      if (any(rr[,"Y"] < 0))
        colors <- 3:2
      else
        colors <- rainbow(max(rr[,"Y"]), start=0,end=1/2)
    if (any(rr[,"Y"] < 0))  
      cols <- ifelse(rr[,"Y"] > 0, colors[1], colors[2])
    else
      cols <- colors[rr[,"Y"]]
  
    ylab <- switch(what,
      z = "z-score",
      p = "p-value",
      s = "posterior effect",
      w = "weighted posterior effect"
    )
    if (!missing(ylim)) { 
      ylims <- ylim
    } else {
      ylims <- switch(what, 
        z=,p= range(bars),
        s=,w= range(c(bars, rr[,"ER"]))
      )
      if (ylims[1] > 0) ylims[1] <- 0
    }
    if (legend) {
      nbars <- length(bars)
      room <- (ylims[2] - max(bars[trunc(nbars*.6):nbars])) / diff(ylims)
      ylims[2] <- ylims[2] + diff(ylims) * max(0,.125*length(colors) - room)
    }
    mids <- drop(barplot(bars, yaxt="n", border=NA, las=2, ylab=ylab, ylim=ylims, mgp=c(4,1,0), col=cols, cex.names=cex.labels))
    
    # help lines
    if (dendrogram && help.lines) {
      mb <- max(bars)
      for (i in 1: length(bars))
        lines(c(mids[i],mids[i]),c(max(0,bars[i])+.01*mb,mb*1.2),col=gray(.8),lty=3 )
    }    
    
    if (what == "p") {
      labs <- seq(0,ylims[2], by = max(1,ylims[2] %/% 5))
      if (length(labs)==1)
        labs <- log10(c(1,2,10/3,5))
      else if (length(labs) <= 2)
        labs <- outer(log10(c(1,2,5)),labs,"+")
      else if (length(labs) <= 4)
        labs <- outer(log10(c(1,10/3)),labs,"+")
      axis(2, at = labs, labels=10^-labs, las=2)
    } else
      axis(2, las=2)
    if (what %in% c("s","w")) {
      sapply(seq_along(mids), function(i) {
        lines(c(mids[i]-0.5, mids[i]+0.5), rep(rr[i,"ER"],2), lwd=3)
        sapply(seq_len(max(0, (bars[i] - rr[i,"ER"])/rr[i,"sdR"])), function(k)
          lines(c(mids[i]-0.5, mids[i]+0.5), rep(rr[i,"ER"]+k*rr[i,"sdR"],2))
        )
        sapply(-seq_len(max(0, -(bars[i] - rr[i,"ER"])/rr[i,"sdR"])), function(k)
          lines(c(mids[i]-0.5, mids[i]+0.5), rep(rr[i,"ER"]+k*rr[i,"sdR"],2))
        )
      })
    }
    abline(0,0)
  
    if (legend)
      legend("topright", obj@legend$subj, fill = colors, bg="white")
  
    #reset defaults
    layout(1)
    par(mai=margins)
  
    if (!missing(pdf))
      title(ttl)
  
  }
  
  if (!missing(pdf))
    dev.off()

  if (length(object)== 1) {
    out <- cbind("P-value" = pps, Statistic = rr[,1], Expected = rr[,2], Std.dev = rr[,3], Residual = rr[,4])
    rownames(out) <- names(bars)
  } else
    out <- NULL

  invisible(out)
 }


######################################
# Similarity function
# Visualizes the XX' matrix
######################################
similarity <- function(object, cluster = "average", legend = TRUE) {

  # reconstruct XX
  if (length(object) > 1)
    stop("length(object) > 1. Please reduce to a single test result")
  if (is.null(object@weights))
    weights <- rep(1, size(object))
  else
    weights <- object@weights[[1]]
  if (is.null(object@subsets))
    subset <- seq_len(size(object))
  else
    subset <- object@subsets[[1]]

  X <- object@functions$getX(subset, weights)
  if (object@directional) X <- cbind(X, sqrt(object@directional) * rowSums(X))

  sds <- sqrt(rowSums(X*X))
  sds[sds < max(sds)*1e-14] <- Inf
  cors <- crossprod(t(X)) / outer(sds,sds)

  # Make a distance matrix and a dendrogram
  dendrogram <- ((!is.logical(cluster)) || (cluster)) && (substr(cluster,1,1) != "n")
  if (is.logical(cluster) && dendrogram) cluster <- "average"
  if (dendrogram) {
    dd <- as.dist(1-cors)
    dend <- as.dendrogram(hclust(dd, method = cluster))
  } 

  # Reconstruct XX matrix
  XX <- crossprod(t(X))
  diag(XX) <- NA

  # make green and red, making sure black represents zero
  posfraq <- - round(max(XX, na.rm=TRUE) / min(XX, na.rm=TRUE) * 100)
  red <- c(100:1,rep(0,posfraq))/100
  green <- c(rep(0,100),1:posfraq)/posfraq
  color=rgb(red,green,0)

  # Get sidecolors w.r.t Y
  Y <- object@functions$getY()
  scoreY <- 0.5 - 0.5 * round(Y / max(abs(Y)), 2)
  #sidecolor <- gray(scoreY)

  sidecolor <- rgb(1-ifelse(scoreY < 0.5, (1-scoreY)/2, 0), 1-ifelse(scoreY < 0.5, (1-scoreY)/2, 0), 1-ifelse(scoreY < 0.5, 0, scoreY/2))

  if (dendrogram)
    heatmap(XX, Rowv= dend, Colv=rev(dend), col=color, scale= "none",
      RowSideColors = sidecolor, ColSideColors = sidecolor)
  else
    heatmap(XX, Rowv= NA, Colv=NA, col=color, scale= "none", 
      RowSideColors = sidecolor, ColSideColors = sidecolor)
      
  if (legend && dendrogram)
    legend("topleft", c("similar", "neutral", "dissimilar"), fill=c(3,1,2), cex=.6)
    
  invisible(XX)
}
jellegoeman/globaltest documentation built on Dec. 29, 2021, 9:11 p.m.