#' @import ggplot2
#' @importFrom jmvcore matchSet
#' @importFrom jmvcore .
ancovaClass <- R6::R6Class(
"ancovaClass",
inherit=ancovaBase,
private=list(
#### Member variables ----
.model = NA,
.postHocRows = NA,
.finalData = NA,
.residuals = NA,
emMeans = list(),
#### Init + run functions ----
.init=function() {
private$.finalData <- NULL
private$.model <- NULL
private$.residuals <- NULL
private$.initMainTable()
factors <- self$options$factors
modelTerms <- private$.modelTerms()
if (length(factors) == 0 || length(modelTerms) == 0)
return()
private$.initContrastTables()
private$.initPostHoc()
private$.initEmm()
private$.initEmmTable()
},
.run=function() {
dep <- self$options$dep
factors <- self$options$factors
modelTerms <- private$.modelTerms()
if (is.null(dep) || length(factors) == 0 || length(modelTerms) == 0)
return()
private$.dataCheck()
data <- self$finalData
dataB64 <- lapply(data, function(x) {
if (is.factor(x))
levels(x) <- toB64(levels(x))
return(x)
})
results <- private$.compute(dataB64)
private$.populateMainTable(results)
private$.populateContrasts(dataB64)
private$.populateLevenes(dataB64)
private$.populateNormality()
private$.populatePostHoc(dataB64)
private$.prepareEmmPlots(data)
private$.populateEmmTables()
private$.populateOutputs()
},
#### Compute results ----
.compute = function(data) {
dep <- self$options$dep
factors <- self$options$factors
modelTerms <- private$.modelTerms()
singularErrorMessage <- .("Singular fit encountered; one or more predictor variables are a linear combination of other predictor variables.")
perfectFitErrorMessage <- .("Residual sum of squares and/or degrees of freedom are zero, indicating a perfect fit")
suppressWarnings({
old <- base::options()
on.exit(options(old))
base::options(contrasts = c("contr.sum","contr.poly"))
for (contrast in self$options$contrasts) {
levels <- base::levels(data[[contrast$var]])
stats::contrasts(data[[contrast$var]]) <- private$.createContrasts(levels, contrast$type)
}
formula <- jmvcore::constructFormula(dep, modelTerms)
formula <- stats::as.formula(formula)
model <- stats::aov(formula, data)
private$.model <- model
self$results$.setModel(model)
singular <- NULL
if (self$options$ss == '1') {
results <- try(stats::anova(private$.model), silent=TRUE)
} else if (self$options$ss == '2') {
results <- try(car::Anova(private$.model, type=2, singular.ok=FALSE), silent=TRUE)
if (isError(results)) {
message <- extractErrorMessage(results)
if (message == 'there are aliased coefficients in the model')
singular <- singularErrorMessage
results <- try(car::Anova(private$.model, type=2, singular.ok=TRUE), silent=TRUE)
}
} else {
results <- try({
r <- car::Anova(private$.model, type=3, singular.ok=FALSE)
r <- r[-1,]
}, silent=TRUE)
if (isError(results)) {
message <- extractErrorMessage(results)
if (message == 'there are aliased coefficients in the model')
singular <- singularErrorMessage
results <- try({
r <- car::Anova(private$.model, type=3, singular.ok=TRUE)
r <- r[-1,]
}, silent=TRUE)
}
}
if (isError(results)) {
message <- extractErrorMessage(results)
if (message == 'residual df = 0')
reject(perfectFitErrorMessage, code=exceptions$modelError)
}
if (results['Residuals', 'Sum Sq'] == 0 || results['Residuals', 'Df'] == 0)
reject(perfectFitErrorMessage, code=exceptions$modelError)
}) # suppressWarnings
return(list(r=results, singular=singular))
},
#### Init tables/plots functions ----
.initMainTable = function() {
table <- self$results$main
if (self$options$modelTest) {
table$addRow(rowKey='.', list(name=.('Overall model')))
table$addFormat(rowKey='.', col=1, format=Cell.BEGIN_END_GROUP)
}
modelTerms <- private$.modelTerms()
if (length(modelTerms) > 0) {
for (i in seq_along(modelTerms)) {
term <- modelTerms[[i]]
table$addRow(rowKey=term, list(name=stringifyTerm(term)))
if (i == 1)
table$addFormat(rowKey=term, col=1, format=Cell.BEGIN_GROUP)
else if (i == length(modelTerms))
table$addFormat(rowKey=term, col=1, format=Cell.END_GROUP)
}
} else {
table$addRow(rowKey='...', list(name='...'))
table$addFormat(rowKey='...', col=1, format=Cell.BEGIN_END_GROUP)
}
table$addRow(rowKey='', list(name=.('Residuals')))
table$addFormat(rowKey='', col=1, format=Cell.BEGIN_END_GROUP)
if (self$options$ss == '1') {
table$setRefs('R')
} else {
table$setRefs('car')
}
},
.initContrastTables = function() {
data <- private$.data
tables <- self$results$contrasts
for (contrast in self$options$contrasts) {
if (contrast$type == 'none')
next()
table <- tables$addItem(contrast)
var <- data[[contrast$var]]
levels <- base::levels(var)
labels <- private$.contrastLabels(levels, contrast$type)
for (label in labels)
table$addRow(rowKey=label, list(contrast=label))
}
},
.initPostHoc=function() {
data <- private$.data
bs <- self$options$factors
phTerms <- self$options$postHoc
bsLevels <- list()
for (i in seq_along(bs))
bsLevels[[bs[i]]] <- levels(data[[bs[i]]])
tables <- self$results$postHoc
postHocRows <- list()
postHocTableTitle <- .('Post Hoc Comparisons - {term}')
for (ph in phTerms) {
table <- tables$get(key=ph)
table$setTitle(jmvcore::format(postHocTableTitle, term=stringifyTerm(ph)))
for (i in seq_along(ph))
table$addColumn(name=paste0(ph[i],'1'), title=ph[i], type='text', superTitle=.('Comparison'), combineBelow=TRUE)
table$addColumn(name='sep', title='', type='text', content='-', superTitle=.('Comparison'), format='narrow')
for (i in seq_along(ph))
table$addColumn(name=paste0(ph[i],'2'), title=ph[i], type='text', superTitle=.('Comparison'))
table$addColumn(name='md', title=.('Mean Difference'), type='number')
table$addColumn(name='se', title=.('SE'), type='number')
table$addColumn(name='df', title=.('df'), type='number')
table$addColumn(name='t', title=.('t'), type='number')
table$addColumn(name='pnone', title=.('p'), type='number', format='zto,pvalue', visible="(postHocCorr:none)")
table$addColumn(name='ptukey', title=.('p<sub>tukey</sub>'), type='number', format='zto,pvalue', visible="(postHocCorr:tukey)")
table$addColumn(name='pscheffe', title=.('p<sub>scheffe</sub>'), type='number', format='zto,pvalue', visible="(postHocCorr:scheffe)")
table$addColumn(name='pbonferroni', title=.('p<sub>bonferroni</sub>'), type='number', format='zto,pvalue', visible="(postHocCorr:bonf)")
table$addColumn(name='pholm', title=.('p<sub>holm</sub>'), type='number', format='zto,pvalue', visible="(postHocCorr:holm)")
ciTitleES <- jmvcore::format(.('{ciWidth}% Confidence Interval'), ciWidth=self$options$postHocEsCiWidth)
table$addColumn(name='d', title=.("Cohen's d"), type='number', visible="(postHocES:d)")
table$addColumn(name='dlower', title=.('Lower'), type='number', visible="(postHocES:d && postHocEsCi)", superTitle=ciTitleES)
table$addColumn(name='dupper', title=.('Upper'), type='number', visible="(postHocES:d && postHocEsCi)", superTitle=ciTitleES)
combin <- expand.grid(bsLevels[rev(ph)])
combin <- sapply(combin, as.character, simplify = 'matrix')
if (length(ph) > 1)
combin <- combin[,rev(1:length(combin[1,]))]
comp <- list()
iter <- 1
for (i in 1:(length(combin[,1]) - 1)) {
for (j in (i+1):length(combin[,1])) {
comp[[iter]] <- list()
comp[[iter]][[1]] <- combin[i,]
comp[[iter]][[2]] <- combin[j,]
if (j == length(combin[,1]))
comp[[iter]][[3]] <- TRUE
else
comp[[iter]][[3]] <- FALSE
iter <- iter + 1
}
}
postHocRows[[composeTerm(ph)]] <- comp
for (i in seq_along(comp)) {
row <- list()
for (c in seq_along(comp[[i]][[1]]))
row[[paste0(names(comp[[i]][[1]][c]),'1')]] <- as.character(comp[[i]][[1]][c])
for (c in seq_along(comp[[i]][[2]]))
row[[paste0(names(comp[[i]][[2]][c]),'2')]] <- as.character(comp[[i]][[2]][c])
table$addRow(rowKey=i, row)
if (comp[[i]][[3]] == TRUE)
table$addFormat(rowNo=i, col=1, Cell.END_GROUP)
}
table$setNote('note', .('Comparisons are based on estimated marginal means'))
}
private$.postHocRows <- postHocRows
},
.initEmm = function() {
emMeans <- self$options$emMeans
group <- self$results$emm
for (j in seq_along(emMeans)) {
emm <- emMeans[[j]]
if ( ! is.null(emm)) {
group$addItem(key=j)
emmGroup <- group$get(key=j)
emmGroup$setTitle(jmvcore::stringifyTerm(emm))
image <- emmGroup$emmPlot
size <- private$.emmPlotSize(emm)
image$setSize(size[1], size[2])
}
}
},
.initEmmTable = function() {
emMeans <- self$options$emMeans
group <- self$results$emm
emMeansTableTitle <- .('Estimated Marginal Means - {term}')
ciWidthTitle <- jmvcore::format(.('{ciWidth}% Confidence Interval'), ciWidth=self$options$ciWidthEmm)
for (j in seq_along(emMeans)) {
emm <- emMeans[[j]]
if ( ! is.null(emm)) {
emmGroup <- group$get(key=j)
table <- emmGroup$emmTable
table$setTitle(jmvcore::format(emMeansTableTitle, term=jmvcore::stringifyTerm(emm)))
nLevels <- numeric(length(emm))
for (k in rev(seq_along(emm))) {
table$addColumn(name=emm[k], title=emm[k], type='text', combineBelow=TRUE)
nLevels[k] <- length(levels(self$data[[ emm[k] ]]))
}
table$addColumn(name='mean', title=.('Mean'), type='number')
table$addColumn(name='se', title=.('SE'), type='number')
table$addColumn(name='lower', title=.('Lower'), type='number', superTitle=ciWidthTitle)
table$addColumn(name='upper', title=.('Upper'), type='number', superTitle=ciWidthTitle)
nRows <- prod(nLevels)
for (k in 1:nRows) {
row <- list()
table$addRow(rowKey=k, row)
}
}
}
},
#### Populate tables functions ----
.populateMainTable = function(results) {
table <- self$results$main
r <- results$r
singular <- results$singular
if ( ! is.null(singular))
table$setNote('singular', singular)
rowCount <- dim(r)[1]
rowNames <- dimnames(r)[[1]]
errIndex <- nrow(r)
errSS <- r[errIndex,'Sum Sq']
errDF <- r[errIndex,'Df']
errMS <- errSS / errDF
totalSS <- sum(r[['Sum Sq']], na.rm=TRUE)
modelSS <- totalSS - errSS
decomposed <- decomposeTerms(rowNames)
for (rowKey in table$rowKeys) {
if (identical(rowKey, ''))
index <- rowCount
else if (identical(rowKey, '.'))
index <- 0
else
index <- matchSet(rowKey, decomposed)
if (index > 0) {
ss <- r[index, 'Sum Sq']
df <- r[index, 'Df']
ms <- ss / df
F <- r[index, 'F value']
p <- r[index, 'Pr(>F)']
if (length(F) == 1 && is.finite(F)) {
e <- ss / totalSS
ep <- ss / (ss + errSS)
w <- (ss - (df * errMS)) / (totalSS + errMS)
} else {
e <- ''
ep <- ''
w <- ''
}
if ( ! is.finite(ss))
ss <- 0
if ( ! is.finite(ms))
ms <- ''
if (length(F) != 1 || ! is.finite(F))
F <- ''
if ( ! is.finite(p))
p <- ''
} else if (index == 0) {
summ <- summary.lm(self$model)
fstat <- summ$fstatistic
ss <- modelSS
df <- unname(fstat[2])
ms <- modelSS / df
F <- unname(fstat[1])
p <- stats::pf(fstat[1], fstat[2], fstat[3], lower.tail=FALSE)
e <- ''
ep <- ''
w <- ''
} else {
ss <- 0
df <- NaN
ms <- ''
F <- ''
p <- ''
e <- ''
ep <- ''
w <- ''
}
tableRow <- list(ss=ss, df=df, ms=ms, F=F, p=p, etaSq=e, etaSqP=ep, omegaSq=w)
table$setRow(rowKey=rowKey, tableRow)
}
},
.populatePostHoc=function(data) {
terms <- self$options$postHoc
if (length(terms) == 0)
return()
tables <- self$results$postHoc
postHocRows <- list()
for (ph in terms) {
table <- tables$get(key=ph)
term <- jmvcore::composeTerm(ph)
termB64 <- jmvcore::composeTerm(toB64(ph))
formula <- as.formula(paste('~', term))
suppressWarnings({
# table$setStatus('running')
emmeans::emm_options(sep = ",", parens = "a^")
referenceGrid <- emmeans::emmeans(self$model, formula)
none <- summary(pairs(referenceGrid, adjust='none'))
tukey <- summary(pairs(referenceGrid, adjust='tukey'))
scheffe <- summary(pairs(referenceGrid, adjust='scheffe'))
bonferroni <- summary(pairs(referenceGrid, adjust='bonferroni'))
holm <- summary(pairs(referenceGrid, adjust='holm'))
effSize <- as.data.frame(
emmeans::eff_size(
referenceGrid,
sigma=sigma(self$model),
edf=self$model$df.residual,
level=self$options$postHocEsCiWidth/100
)
)
}) # suppressWarnings
resultRows <- lapply(strsplit(as.character(none$contrast), ' - '), function(x) strsplit(x, ','))
tableRows <- private$.postHocRows[[term]]
for (i in seq_along(tableRows)) {
location <- lapply(resultRows, function(x) {
c1 <- identical(x[[1]], toB64(as.character(tableRows[[i]][[1]])))
c2 <- identical(x[[1]], toB64(as.character(tableRows[[i]][[2]])))
c3 <- identical(x[[2]], toB64(as.character(tableRows[[i]][[1]])))
c4 <- identical(x[[2]], toB64(as.character(tableRows[[i]][[2]])))
if (c1 && c4)
return(list(TRUE,FALSE))
else if (c2 && c3)
return(list(TRUE,TRUE))
else
return(list(FALSE,FALSE))
})
index <- which(sapply(location, function(x) return(x[[1]])))
if (length(index) == 1) {
reverse <- location[[index]][[2]]
row <- list()
row[['md']] <- if(reverse) -none[index,'estimate'] else none[index,'estimate']
row[['se']] <- none[index,'SE']
row[['df']] <- none[index,'df']
row[['t']] <- if(reverse) -none[index,'t.ratio'] else none[index,'t.ratio']
row[['pnone']] <- none[index,'p.value']
row[['ptukey']] <- tukey[index,'p.value']
row[['pscheffe']] <- scheffe[index,'p.value']
row[['pbonferroni']] <- bonferroni[index,'p.value']
row[['pholm']] <- holm[index,'p.value']
row[['d']] <- effSize[index, 'effect.size']
row[['dlower']] <- effSize[index, 'lower.CL']
row[['dupper']] <- effSize[index, 'upper.CL']
table$setRow(rowNo=i, values=row)
} else {
table$setRow(rowNo=i, values=list(
md=NaN, se='', df='', t='',
pnone='', ptukey='', pscheffe='', pbonferroni='', pholm='',
es=''))
}
}
table$setStatus('complete')
private$.checkpoint()
}
},
.populateContrasts=function(data) {
contrResults <- stats::summary.lm(private$.model)[["coefficients"]]
contrasts <- self$options$contrasts
for (contrast in contrasts) {
var <- contrast$var
type <- contrast$type
if (type == 'none')
next()
levels <- base::levels(data[[var]])
labels <- private$.contrastLabels(fromB64(levels), type)
table <- self$results$get('contrasts')$get(contrast)
for (i in seq_along(labels)) {
label <- labels[[i]]
name <- paste0(jmvcore::composeTerm(var), i)
table$setRow(rowNo=i, list(
contrast=label,
est=contrResults[name, "Estimate"],
se=contrResults[name, "Std. Error"],
t=contrResults[name, "t value"],
p=contrResults[name, "Pr(>|t|)"]
))
}
}
},
.populateLevenes=function(data) {
if ( ! self$options$homo)
return()
data[[".RES"]] = abs(self$residuals)
modelTerms <- private$.modelTerms()
factors <- self$options$factors
rhs <- paste0('`', factors, '`', collapse=':')
formula <- as.formula(paste0('.RES ~', rhs))
model <- stats::lm(formula, data)
summary <- stats::anova(model)
table <- self$results$get('assump')$get('homo')
table$setRow(rowNo=1, values=list(
F=summary$`F value`[1],
df1=summary$Df[1],
df2=summary$Df[2],
p=summary$`Pr(>F)`[1]))
},
.populateNormality = function() {
if ( ! self$options$norm)
return()
residuals <- self$residuals
if (is.null(residuals))
return()
res <- try(shapiro.test(residuals))
if (jmvcore::isError(res)) {
values <- list(`s[sw]`=NaN, `p[sw]`='')
} else {
values <- list(`s[sw]`=res$statistic, `p[sw]`=res$p.value)
}
self$results$assump$norm$setRow(rowNo=1, values)
},
.populateEmmTables = function() {
emMeans <- self$options$emMeans
emmTables <- private$emMeans
group <- self$results$emm
for (j in seq_along(emMeans)) {
emm <- emMeans[[j]]
if ( ! is.null(emm)) {
emmGroup <- group$get(key=j)
table <- emmGroup$emmTable
emmTable <- emmTables[[j]]
for (k in 1:nrow(emmTable)) {
row <- list()
sign <- list()
for (l in seq_along(emm)) {
value <- emmTable[k, emm[l]]
row[[emm[l]]] <- jmvcore::fromB64(value)
}
row[['mean']] <- emmTable[k, 'emmean']
row[['se']] <- emmTable[k, 'SE']
row[['lower']] <- emmTable[k, 'lower.CL']
row[['upper']] <- emmTable[k, 'upper.CL']
table$setRow(rowNo=k, values=row)
}
}
}
},
.populateOutputs=function() {
if (self$options$residsOV && self$results$residsOV$isNotFilled()) {
self$results$residsOV$setRowNums(rownames(self$finalData))
self$results$residsOV$setValues(self$residuals)
}
},
#### Plot functions ----
.qqPlot=function(image, ggtheme, theme, ...) {
residuals <- rstandard(self$model)
if (is.null(residuals) || all(is.na(residuals)))
return()
df <- as.data.frame(qqnorm(residuals, plot.it=FALSE))
return(ggplot(data=df, aes(y=y, x=x)) +
geom_abline(slope=1, intercept=0, colour=theme$color[1]) +
geom_point(aes(x=x,y=y), size=2, colour=theme$color[1]) +
xlab(.("Theoretical Quantiles")) +
ylab(.("Standardized Residuals")) +
ggtheme)
},
.prepareEmmPlots = function(data) {
emMeans <- self$options$emMeans
group <- self$results$emm
emmTables <- list()
model <- self$model
dep <- self$options$dep
for (j in seq_along(emMeans)) {
term <- emMeans[[j]]
if ( ! is.null(term)) {
image <- group$get(key=j)$emmPlot
# termB64 <- jmvcore::toB64(term)
termB64 <- jmvcore::composeTerms(term)
formula <- formula(paste('~', jmvcore::composeTerm(term)))
if (self$options$emmWeights)
weights <- 'equal'
else
weights <- 'cells'
suppressMessages({
emmeans::emm_options(sep = ",", parens = "a^")
mm <- try(
emmeans::emmeans(model, formula, options=list(level=self$options$ciWidthEmm / 100), weights = weights),
silent = TRUE
)
})
d <- as.data.frame(summary(mm))
emmTables[[ j ]] <- d
for (k in 1:3) {
if ( ! is.na(termB64[k])) {
d[[ term[k] ]] <- factor(jmvcore::fromB64(d[[ term[k] ]]),
jmvcore::fromB64(levels(d[[ term[k] ]])))
}
}
names <- list('x'=termB64[1], 'y'='emmean', 'lines'=termB64[2], 'plots'=termB64[3], 'lower'='lower.CL', 'upper'='upper.CL')
names <- lapply(names, function(x) if (is.na(x)) NULL else x)
labels <- list('x'=term[1], 'y'=dep, 'lines'=term[2], 'plots'=term[3])
labels <- lapply(labels, function(x) if (is.na(x)) NULL else x)
image$setState(list(emm=d, data=data, names=names, labels=labels))
}
}
private$emMeans <- emmTables
},
.emmPlot = function(image, ggtheme, theme, ...) {
if (is.null(image$state))
return(FALSE)
data <- as.data.frame(image$state$data)
emm <- image$state$emm
names <- image$state$names
labels <- image$state$labels
emm$lowerSE <- emm[[names$y]] - emm[['SE']]
emm$upperSE <- emm[[names$y]] + emm[['SE']]
if (theme$bw) {
lty <- names$lines
} else {
lty <- NULL
}
if (self$options$emmPlotData)
dodge <- position_dodge(0.7)
else
dodge <- position_dodge(0.3)
if (is.null(names$lines))
jitterdodge <- position_jitter(width = 0.1)
else
jitterdodge <- position_jitterdodge(dodge.width = 0.7, jitter.width = 0.4)
p <- ggplot(
data=emm,
aes_string(
x=names$x,
y=names$y,
color=names$lines,
fill=names$lines,
linetype=lty,
group=names$lines
),
inherit.aes = FALSE
)
if (self$options$emmPlotData)
p <- p + geom_point(data=data, aes(y=!!data[[labels$y]]), alpha=0.3, position=jitterdodge)
p <- p + geom_line(size=.8, position=dodge)
if (self$options$emmPlotError == 'ci') {
p <- p + geom_errorbar(
aes_string(x=names$x, ymin=names$lower, ymax=names$upper, linetype=NULL),
width=.1, size=.8, position=dodge
)
} else if (self$options$emmPlotError == 'se') {
p <- p + geom_errorbar(
aes_string(x=names$x, ymin='lowerSE', ymax='upperSE', linetype=NULL),
width=.1, size=.8, position=dodge
)
}
p <- p + geom_point(shape=21, fill='white', size=3, position=dodge)
if ( ! is.null(names$plots)) {
formula <- as.formula(paste(". ~", names$plots))
p <- p + facet_grid(formula)
}
p <- p +
labs(x=labels$x, y=labels$y, fill=labels$lines, color=labels$lines, linetype=labels$lines) +
ggtheme + theme(panel.spacing = unit(2, "lines"))
return(p)
},
#### Helper functions ----
.contrastLabels=function(levels, type) {
nLevels <- length(levels)
labels <- list()
if (length(levels) <= 1) {
# do nothing
} else if (type == 'simple') {
for (i in seq_len(nLevels-1))
labels[[i]] <- paste(levels[i+1], '-', levels[1])
} else if (type == 'deviation') {
all <- paste(levels, collapse=', ')
for (i in seq_len(nLevels-1))
labels[[i]] <- paste(levels[i+1], '-', all)
} else if (type == 'difference') {
for (i in seq_len(nLevels-1)) {
rhs <- paste0(levels[1:i], collapse=', ')
labels[[i]] <- paste(levels[i + 1], '-', rhs)
}
} else if (type == 'helmert') {
for (i in seq_len(nLevels-1)) {
rhs <- paste(levels[(i+1):nLevels], collapse=', ')
labels[[i]] <- paste(levels[i], '-', rhs)
}
} else if (type == 'repeated') {
for (i in seq_len(nLevels-1))
labels[[i]] <- paste(levels[i], '-', levels[i+1])
} else if (type == 'polynomial') {
names <- c(
.('linear'), .('quadratic'), .('cubic'), .('quartic'),
.('quintic'), .('sextic'), .('septic'), .('octic')
)
for (i in seq_len(nLevels-1)) {
if (i <= length(names)) {
labels[[i]] <- names[i]
} else {
labels[[i]] <- paste('degree', i, 'polynomial')
}
}
}
labels
},
.createContrasts=function(levels, type) {
nLevels <- length(levels)
if (type == 'simple') {
dummy <- contr.treatment(levels)
dimnames(dummy) <- NULL
coding <- matrix(rep(1/nLevels, prod(dim(dummy))), ncol=nLevels-1)
contrast <- (dummy - coding)
} else if (type == 'deviation') {
contrast <- matrix(0, nrow=nLevels, ncol=nLevels-1)
for (i in seq_len(nLevels-1)) {
contrast[i+1, i] <- 1
contrast[1, i] <- -1
}
} else if (type == 'difference') {
contrast <- stats::contr.helmert(levels)
for (i in 1:ncol(contrast))
contrast[,i] <- contrast[,i] / (i + 1)
dimnames(contrast) <- NULL
} else if (type == 'helmert') {
contrast <- matrix(0, nrow=nLevels, ncol=nLevels-1)
for (i in seq_len(nLevels-1)) {
p <- (1 / (nLevels - i + 1))
contrast[i,i] <- p * (nLevels - i)
contrast[(i+1):nLevels,i] <- -p
}
} else if (type == 'polynomial') {
contrast <- stats::contr.poly(levels)
dimnames(contrast) <- NULL
} else if (type == 'repeated') {
contrast <- matrix(0, nrow=nLevels, ncol=nLevels-1)
for (i in seq_len(nLevels-1)) {
contrast[1:i,i] <- (nLevels-i) / nLevels
contrast[(i+1):nLevels,i] <- -i / nLevels
}
} else {
contrast <- NULL
}
contrast
},
.modelTerms=function() {
modelTerms <- self$options$modelTerms
if (length(modelTerms) == 0)
modelTerms <- private$.ff()
lengths <- vapply(modelTerms, length, 1)
modelTerms <- modelTerms[order(lengths)]
modelTerms
},
.ff=function() {
factors <- self$options$factors
if (length(factors) > 1) {
formula <- as.formula(paste('~', paste(paste0('`', factors, '`'), collapse='*')))
terms <- attr(stats::terms(formula), 'term.labels')
modelTerms <- sapply(terms, function(x) as.list(strsplit(x, ':')), USE.NAMES=FALSE)
} else {
modelTerms <- as.list(factors)
}
for (i in seq_along(modelTerms)) {
term <- modelTerms[[i]]
quoted <- grepl('^`.*`$', term)
term[quoted] <- substring(term[quoted], 2, nchar(term[quoted])-1)
modelTerms[[i]] <- term
}
covs <- NULL
if ('covs' %in% names(self$options))
covs <- self$options$covs
for (covariate in covs)
modelTerms[[ length(modelTerms) + 1 ]] <- covariate
modelTerms
},
.formula=function() {
jmvcore:::composeFormula(self$options$dep, self$options$modelTerms)
},
.sourcifyOption = function(option) {
name <- option$name
value <- option$value
if (option$name %in% c('factors', 'dep', 'covs', 'modelTerms'))
return('')
if (name == 'contrasts') {
i <- 1
while (i <= length(value)) {
item <- value[[i]]
if (item$type == 'none')
value[[i]] <- NULL
else
i <- i + 1
}
if (length(value) == 0)
return('')
} else if (name == 'modelTerms') {
if (base::identical(as.list(value), private$.ff()))
return('')
} else if (name == 'postHoc') {
if (length(value) == 0)
return('')
}
super$.sourcifyOption(option)
},
.emmPlotSize = function(emm) {
data <- self$data
levels <- list()
for (i in seq_along(emm))
levels[[ emm[i] ]] <- levels(data[[ emm[i] ]])
nLevels <- as.numeric(sapply(levels, length))
nLevels <- ifelse(is.na(nLevels[1:3]), 1, nLevels[1:3])
nCharLevels <- as.numeric(sapply(lapply(levels, nchar), max))
nCharLevels <- ifelse(is.na(nCharLevels[1:3]), 0, nCharLevels[1:3])
nCharNames <- as.numeric(nchar(names(levels)))
nCharNames <- ifelse(is.na(nCharNames[1:3]), 0, nCharNames[1:3])
xAxis <- 30 + 20
yAxis <- 30 + 20
width <- max(350, 25 * nLevels[1] * nLevels[2] * nLevels[3])
height <- 300 + ifelse(nLevels[3] > 1, 20, 0)
legend <- max(25 + 21 + 3.5 + 8.3 * nCharLevels[2] + 28, 25 + 10 * nCharNames[2] + 28)
width <- yAxis + width + ifelse(nLevels[2] > 1, legend, 0)
height <- xAxis + height
return(c(width, height))
},
.dataCheck = function() {
dep <- self$options$dep
factors <- self$options$factors
if (is.factor(self$finalData[[dep]])) {
jmvcore::reject(
.("Dependent variable '{dep}' must be continuous"),
code=exceptions$dataError,
dep=dep
)
}
if (nrow(self$finalData) == 0) {
jmvcore::reject(
.("The dataset contains 0 rows (after removing rows with missing values)"),
code=exceptions$dataError
)
}
uniqueValues = length(unique(self$finalData[[dep]]))
if (uniqueValues == 0) {
jmvcore::reject(
.("Dependent variable '{dep}' contains no data (after removing rows with missing values)"),
code=exceptions$dataError,
dep=dep
)
} else if (uniqueValues == 1) {
jmvcore::reject(
.("Dependent variable '{dep}' contains only one unique value (after removing rows with missing values)"),
code=exceptions$dataError,
dep=dep
)
}
if (any((is.infinite(self$finalData[[dep]])))) {
jmvcore::reject(
.("Dependent variable '{dep}' contains infinite values"),
code=exceptions$dataError,
dep=dep
)
}
for (factorName in factors) {
lvls <- base::levels(self$finalData[[factorName]])
if (length(lvls) == 1) {
jmvcore::reject(
.("Factor '{factorName}' contains only a single level (after removing rows with missing values)"),
code=exceptions$dataError,
factorName=factorName
)
} else if (length(lvls) == 0) {
jmvcore::reject(
.("Factor '{factorName}' contains no data (after removing rows with missing values)"),
code=exceptions$dataError,
factorName=factorName
)
}
if (any(table(self$finalData[[factorName]]) == 0)) {
jmvcore::reject(
.("Factor '{factorName}' contains unused levels (after removing rows with missing values)"),
code=exceptions$dataError,
factorName=factorName
)
}
}
}),
#### Active bindings ----
active=list(
ready=function() {
dep <- self$options$dep
factors <- self$options$factors
modelTerms <- private$.modelTerms()
return( ! is.null(dep)
&& (length(factors) > 0 || length(modelTerms) > 0)
&& nrow(self$data) > 0)
},
finalData=function() {
if (self$ready && is.null(private$.finalData)) {
dep <- self$options$dep
factors <- self$options$factors
covs <- NULL
if ('covs' %in% names(self$options))
covs <- self$options$covs
data <- self$data
if ( ! is.null(dep))
data[[dep]] <- jmvcore::toNumeric(data[[dep]])
for (factor in factors)
data[[factor]] <- as.factor(data[[factor]])
for (covariate in covs)
data[[covariate]] <- jmvcore::toNumeric(data[[covariate]])
private$.finalData <- na.omit(data)
}
private$.finalData
},
model=function() {
if (self$ready && is.null(private$.model)) {
dep <- self$options$dep
factors <- self$options$factors
modelTerms <- private$.modelTerms()
data <- self$finalData
suppressWarnings({
old <- base::options()
on.exit(options(old))
base::options(contrasts = c("contr.sum","contr.poly"))
for (contrast in self$options$contrasts) {
levels <- base::levels(data[[contrast$var]])
stats::contrasts(data[[contrast$var]]) <- private$.createContrasts(levels, contrast$type)
}
formula <- jmvcore::constructFormula(dep, modelTerms)
formula <- stats::as.formula(formula)
private$.model <- stats::aov(formula, data)
})
}
private$.model
},
residuals=function() {
if (self$ready && is.null(private$.residuals))
private$.residuals <- residuals(self$model)
private$.residuals
}
)
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.